66 research outputs found

    Halophyte common ice plants: A future solution to arable land salinization

    Get PDF
    The problems associated with the salinization of soils and water bodies and the increasing competition for scarce freshwater resources are increasing. Current attempts to adapt to these conditions through sustainable agriculture involves searching for new highly salt-tolerant crops, and wild species that have potential as saline crops are particularly suitable. The common ice plant (Mesembryanthemum crystallinum L.) is an edible halophyte member of the Aizoaceae family, which switches from C3 photosynthesis to crassulacean acid metabolism (CAM) when exposed to salinity or water stress. The aim of this review was to examine the potential of using the ice plant in both the wild and as a crop, and to describe its ecology and morphology, environmental and agronomic requirements, and physiology. The antioxidant properties and mineral composition of the ice plant are also beneficial to human health and have been extensively examined

    Ameliorative effects of salt resistance on physiological parameters in the halophyte Salicornia bigelovii torr. with plant growth-promoting rhizobacteria

    Get PDF
    Salicornia bigelovii is a promising resource to cultivate under extreme climatic conditions of arid-desert regions. However, the production of Salicornia depends on the appropriate supplementation of nitrogen rich synthetic fertilizers. Application of specific halotolerant nitrogen-fixing bacteria associated with S. bigelovii could be an important practice for crop production in salt-affected regions. Seedlings of S. bigelovii were inoculated and developed with plant growth promoting rhizobacteria (Klebsiella pnseumoniae) at different salinities (0 and 0.25 M NaCl) grown under in vitro conditions. The inoculation increased growth and physiological activity at a high salinity. The major benefits of inoculation were observed on total seedlings biomass (320 and 175 g at 0 and 0.25 M NaCl, respectively) and adjacent branches of stem biomass (150 and 85 g at 0 and 0.25 M NaCl, respectively). The inoculation with Klebsiella pneumoniae also significantly improved seedlings salinity tolerance compared to the noninoculated controls. In non-salinity conditions, the inoculated seedlings enhanced the CO2 fixation and O2 evolution. The non-inoculated controls were more sensitive to salinity than inoculated seedlings exposed to salinity, as indicated by several measured parameters. Moreover, inoculated seedlings had significantly increase on proline, phenolics content, but not significant in starch compared to noninoculated controls. In conclusion, K. pneumoniae inoculation mitigates the salinity effects and promotes the Salicornia growth.Keywords: Salicornia bigelovii, Klebsiella pneumoniae, halophyte, ecotype, stress salinity. African Journal of Biotechnology Vol. 12(34), pp. 5278-528

    CARACTERIZACIÓN ISOENZIMÁTICA DE CULTIVARES DE NOPAL (Opuntia spp.)/Isoenzyme characterization of nopal cultivars (Opuntia spp.)

    No full text
    En nopal (Opuntia spp.) como en muchos géneros, los problemas de clasicación taxonómica son frecuentes, esto complica la identicación correcta de cultivares. Este estudio se realizó con la nalidad de detectar polimorsmo en nueve cultivares de nopal de las especies O. amyclaea Ten. (O. albicarpa), O. megacantha, O. crassa y O. cus-indica (L.) Mill., ubicados en la reserva de germoplasma de la Unidad Regional Universitaria de Zonas Áridas de la Universidad Autónoma Chapingo. La proteína soluble de las raíces se separó por electroforesis para evaluar la presencia de nueve sistemas enzimáticos. De estos, fosfoglucomutasa (PGM), 6-fosfogluconato deshidrogenasa (6- PGD), glutamato oxaloacetato transaminasa (GOT) y malato deshidrogenasa (MDH) expresaron reacción suciente para una identicación de bandas de actividad enzimática. Las enzimas málicas (ME) y aconitasa (ACO) no presentaron polimorsmo, por tanto no se recomiendan para la clasicación de cultivares de nopal. En contraste, PGM, 6-PGD, GOT y MDH presentaron diferencias o polimorsmo indeterminado en su patrón de bandeo, por lo que se consideran relevantes para la identicación taxonómica y evaluación de la variabilidad genética de nopal

    Response of seeds and pollen of Onobrychis viciifolia and Onobrychis oxyodonta var. armena to NaCl stress

    Get PDF
    Sainfoin (Onobrychis viciifolia Scop.) is an important forage legume crop with 52 species adapted to dry and poor soils in Turkey, but little is known about the effects of salinity on germination and seedling growth in arid and semiarid regions suffering from salinity problem. The seeds and pollen of two species of sainfoin O. viciifolia and O. oxyodonta var. armena (Syn: O. armena) were exposed to 0, 5, 10, 20 and 30 dS m-1 of NaCl under in vivo and in vitro conditions and evaluated for germination under salt stress by comparing germination percentage, mean germination time, root and shoot length, fresh and dry seedling weight and dry matter. Increased salinity levels generally resulted in decrease in all traits except time to germination, dry seedling weight and dry matter, which increased at high salinity levels. O. viciifolia seeds germinated and grew more rapidly compared to O. armena seeds under NaCl stress. No decrease in germination and seedling growth up to 10 dS m-1 was recorded. On the other hand, there was a clear difference for germination and seedling growth between in vivo and in vitro conditions. Lower values were obtained from in vitro experiments; suggesting that mineral salts, sucrose and agar may have resulted in higher osmotic potential inhibiting germination and seedling growth of species compared in vivo conditions. Decrease in pollen germination with increasing salinities was very sharp, indicating that pollen germination had higher sensitive to salinity. But, pollen grains of O. armena germinated rapidly compared to O. viciifolia. The results emphasize that in vivo experiments could be used for screening of NaCl tolerance in sainfoin cultivars without expensive chemicals and sophisticated equipments, but pollen germination is more appropriate for its wild relatives

    Dynamical downscaling of historical climate over CORDEX Central America domain with a regionally coupled atmosphere–ocean model

    Get PDF
    The climate in Mexico and Central America is influenced by the Pacific and the Atlantic oceanic basins and atmospheric conditions over continental North and South America. These factors and important ocean–atmosphere coupled processes make the region’s climate a great challenge for global and regional climate modeling. We explore the benefits that coupled regional climate models may introduce in the representation of the regional climate with a set of coupled and uncoupled simulations forced by reanalysis and global model data. Uncoupled simulations tend to stay close to the large-scale patterns of the driving fields, particularly over the ocean, while over land they are modified by the regional atmospheric model physics and the improved orography representation. The regional coupled model adds to the reanalysis forcing the air–sea interaction, which is also better resolved than in the global model. Simulated fields are modified over the ocean, improving the representation of the key regional structures such as the Intertropical Convergence Zone and the Caribbean Low Level Jet. Higher resolution leads to improvements over land and in regions of intense air–sea interaction, e.g., off the coast of California. The coupled downscaling improves the representation of the Mid Summer Drought and the meridional rainfall distribution in southernmost Central America. Over the regions of humid climate, the coupling corrects the wet bias of the uncoupled runs and alleviates the dry bias of the driving model, yielding a rainfall seasonal cycle similar to that in the reanalysis-driven experiments.Universidad de Costa Rca/[805-B7-507]/UCR/Costa RicaCRYOPERU/[144-2015]//PerúUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI

    Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes

    Get PDF
    BACKGROUND: Data are lacking on the long-term effect on cardiovascular events of adding sitagliptin, a dipeptidyl peptidase 4 inhibitor, to usual care in patients with type 2 diabetes and cardiovascular disease. METHODS: In this randomized, double-blind study, we assigned 14,671 patients to add either sitagliptin or placebo to their existing therapy. Open-label use of antihyperglycemic therapy was encouraged as required, aimed at reaching individually appropriate glycemic targets in all patients. To determine whether sitagliptin was noninferior to placebo, we used a relative risk of 1.3 as the marginal upper boundary. The primary cardiovascular outcome was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. RESULTS: During a median follow-up of 3.0 years, there was a small difference in glycated hemoglobin levels (least-squares mean difference for sitagliptin vs. placebo, -0.29 percentage points; 95% confidence interval [CI], -0.32 to -0.27). Overall, the primary outcome occurred in 839 patients in the sitagliptin group (11.4%; 4.06 per 100 person-years) and 851 patients in the placebo group (11.6%; 4.17 per 100 person-years). Sitagliptin was noninferior to placebo for the primary composite cardiovascular outcome (hazard ratio, 0.98; 95% CI, 0.88 to 1.09; P<0.001). Rates of hospitalization for heart failure did not differ between the two groups (hazard ratio, 1.00; 95% CI, 0.83 to 1.20; P = 0.98). There were no significant between-group differences in rates of acute pancreatitis (P = 0.07) or pancreatic cancer (P = 0.32). CONCLUSIONS: Among patients with type 2 diabetes and established cardiovascular disease, adding sitagliptin to usual care did not appear to increase the risk of major adverse cardiovascular events, hospitalization for heart failure, or other adverse events
    corecore