27 research outputs found

    Herramienta de modelado disfuncional tridimensional basado en estudios de neuroimagen

    Get PDF
    El modelado disfuncional basado en estudios de neuroimagen mejora la comprensión de los cambios estructurales provocados ante la presencia de lesiones cerebrales. Actualmente, existen numerosas herramientas para el análisis y procesado de estudios de neuroimagen. Algunas de ellas, como el 3D Slicer, BrainVoyager y el FreeSurfer permiten la creación y navegación sobre modelos tridimensionales cerebrales sin alteraciones estructurales. Sin embargo, no se han detectado herramientas que permitan modelar tridimensionalmente lesiones a partir de estudios de neuroimagen, concretamente de estudios de resonancia magnética. El objetivo de este trabajo es el diseño de una metodología que permite la creación de este tipo de modelos y su visualización y navegación

    Brain injury MRI simulator based on theoretical models of neuroanatomic damage

    Get PDF
    In order to improve the body of knowledge about brain injury impairment is essential to develop image database with different types of injuries. This paper proposes a new methodology to model three types of brain injury: stroke, tumor and traumatic brain injury; and implements a system to navigate among simulated MRI studies. These studies can be used on research studies, to validate new processing methods and as an educational tool, to show different types of brain injury and how they affect to neuroanatomic structures

    Dysfunctional 3D model based on structural and neuropsychological information

    Get PDF
    Acquired brain injury (ABI) 1-2 refers to any brain damage occurring after birth. It usually causes certain damage to portions of the brain. ABI may result in a significant impairment of an individuals physical, cognitive and/or psychosocial functioning. The main causes are traumatic brain injury (TBI), cerebrovascular accident (CVA) and brain tumors. The main consequence of ABI is a dramatic change in the individuals daily life. This change involves a disruption of the family, a loss of future income capacity and an increase of lifetime cost. One of the main challenges in neurorehabilitation is to obtain a dysfunctional profile of each patient in order to personalize the treatment. This paper proposes a system to generate a patient s dysfunctional profile by integrating theoretical, structural and neuropsychological information on a 3D brain imaging-based model. The main goal of this dysfunctional profile is to help therapists design the most suitable treatment for each patient. At the same time, the results obtained are a source of clinical evidence to improve the accuracy and quality of our rehabilitation system. Figure 1 shows the diagram of the system. This system is composed of four main modules: image-based extraction of parameters, theoretical modeling, classification and co-registration and visualization module

    Neuroanatomic-based detection algorithm for automatic labeling of brain structures in brain injury

    Get PDF
    The number and grade of injured neuroanatomic structures and the type of injury determine the degree of impairment after a brain injury event and the recovery options of the patient. However, the body of knowledge and clinical intervention guides are basically focused on functional disorder and they still do not take into account the location of injuries. The prognostic value of location information is not known in detail either. This paper proposes a feature-based detection algorithm, named Neuroanatomic-Based Detection Algorithm (NBDA), based on SURF (Speeded Up Robust Feature) to label anatomical brain structures on cortical and sub-cortical areas. Themain goal is to register injured neuroanatomic structures to generate a database containing patient?s structural impairment profile. This kind of information permits to establish a relation with functional disorders and the prognostic evolution during neurorehabilitation procedures

    The involvement of thaumatin-like proteins in plant food cross-reactivity: a multicenter study using a specific protein microarray.

    Get PDF
    Cross-reactivity of plant foods is an important phenomenon in allergy, with geographical variations with respect to the number and prevalence of the allergens involved in this process, whose complexity requires detailed studies. We have addressed the role of thaumatin-like proteins (TLPs) in cross-reactivity between fruit and pollen allergies. A representative panel of 16 purified TLPs was printed onto an allergen microarray. The proteins selected belonged to the sources most frequently associated with peach allergy in representative regions of Spain. Sera from two groups of well characterized patients, one with allergy to Rosaceae fruit (FAG) and another against pollens but tolerant to food-plant allergens (PAG), were obtained from seven geographical areas with different environmental pollen profiles. Cross-reactivity between members of this family was demonstrated by inhibition assays. Only 6 out of 16 purified TLPs showed noticeable allergenic activity in the studied populations. Pru p 2.0201, the peach TLP (41%), chestnut TLP (24%) and plane pollen TLP (22%) proved to be allergens of probable relevance to fruit allergy, being mainly associated with pollen sensitization, and strongly linked to specific geographical areas such as Barcelona, Bilbao, the Canary Islands and Madrid. The patients exhibited mayor que50% positive response to Pru p 2.0201 and to chestnut TLP in these specific areas. Therefore, their recognition patterns were associated with the geographical area, suggesting a role for pollen in the sensitization of these allergens. Finally, the co-sensitizations of patients considering pairs of TLP allergens were analyzed by using the co-sensitization graph associated with an allergen microarray immunoassay. Our data indicate that TLPs are significant allergens in plant food allergy and should be considered when diagnosing and treating pollen-food allergy

    The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients

    Get PDF
    Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation

    Transferring Know-How for an Autonomous Camera Robotic Assistant

    No full text
    Robotic platforms are taking their place in the operating room because they provide more stability and accuracy during surgery. Although most of these platforms are teleoperated, a lot of research is currently being carried out to design collaborative platforms. The objective is to reduce the surgeon workload through the automation of secondary or auxiliary tasks, which would benefit both surgeons and patients by facilitating the surgery and reducing the operation time. One of the most important secondary tasks is the endoscopic camera guidance, whose automation would allow the surgeon to be concentrated on handling the surgical instruments. This paper proposes a novel autonomous camera guidance approach for laparoscopic surgery. It is based on learning from demonstration (LfD), which has demonstrated its feasibility to transfer knowledge from humans to robots by means of multiple expert showings. The proposed approach has been validated using an experimental surgical robotic platform to perform peg transferring, a typical task that is used to train human skills in laparoscopic surgery. The results show that camera guidance can be easily trained by a surgeon for a particular task. Later, it can be autonomously reproduced in a similar way to one carried out by a human. Therefore, the results demonstrate that the use of learning from demonstration is a suitable method to perform autonomous camera guidance in collaborative surgical robotic platforms

    Cognitive Gesture Recognition Approach for a Surgical Robot Assistant

    No full text
    [Resumen] Las técnicas de cirugía mínimamente invasiva están aumentando en cantidad y complejidad para cubrir una más amplia gama de intervenciones. Más específicamente, la Cirugía Laparoscópica Asistida con Mano (Hand-assisted laparoscopic surgery, HALS) implica el uso de una mano del cirujano dentro del paciente, mientras que la otra maneja una herramienta laparoscópica. En este caso, procedimientos quirúrgicos realizados con una herramienta adicional requieren la ayuda de un asistente. Además, en el caso de un asistente robótico, es obligatoria una comunicación fluida. Esta Interacción Hombre-Máquina debe combinar tanto ordenes explícitas como información implícita de los gestos quirúrgicos. En este contexto, este trabajo se centra en el desarrollo de un sistema de reconocimiento de gestos de la mano. Este se basa en un modelo oculto de Markov (HMM) con un paso de entrenamiento automatizado mejorado. Este algoritmo también puede aprender durante el procedimiento quirúrgico en línea.[Abstract] Minimally Invasive Surgery techniques are growing in quantity and complexity to cover a wider range of interventions. More specifically, the Hand Assisted Laparoscopic Surgery (HALS) involves the use of one surgeon's hand inside the patient whereas the other one manages a single laparoscopic tool. In this scenario, those surgical procedures performed with an additional tool require the aid of an assistant. Furthermore, in the case of a human-robot assistant a fluid communication is mandatory. This Human-Machine Interaction must combine both, explicit orders and implicit information from the surgical gestures. In this context, this paper focuses on the development of a hand gesture re- cognition system for HALS. The recognition is based on a Hidden Markov Model (HMM) algorithm with an improved automated training step, which can also learn during the online surgical procedure

    The involvement of thaumatin-like proteins in plant food cross-reactivity: a multicenter study using a specific protein microarray

    No full text
    Cross-reactivity of plant foods is an important phenomenon in allergy, with geographical variations with respect to the number and prevalence of the allergens involved in this process, whose complexity requires detailed studies. We have addressed the role of thaumatin-like proteins (TLPs) in cross-reactivity between fruit and pollen allergies. A representative panel of 16 purified TLPs was printed onto an allergen microarray. The proteins selected belonged to the sources most frequently associated with peach allergy in representative regions of Spain. Sera from two groups of well characterized patients, one with allergy to Rosaceae fruit (FAG) and another against pollens but tolerant to food-plant allergens (PAG), were obtained from seven geographical areas with different environmental pollen profiles. Cross-reactivity between members of this family was demonstrated by inhibition assays. Only 6 out of 16 purified TLPs showed noticeable allergenic activity in the studied populations. Pru p 2.0201, the peach TLP (41%), chestnut TLP (24%) and plane pollen TLP (22%) proved to be allergens of probable relevance to fruit allergy, being mainly associated with pollen sensitization, and strongly linked to specific geographical areas such as Barcelona, Bilbao, the Canary Islands and Madrid. The patients exhibited >50% positive response to Pru p 2.0201 and to chestnut TLP in these specific areas. Therefore, their recognition patterns were associated with the geographical area, suggesting a role for pollen in the sensitization of these allergens. Finally, the co-sensitizations of patients considering pairs of TLP allergens were analyzed by using the co-sensitization graph associated with an allergen microarray immunoassay. Our data indicate that TLPs are significant allergens in plant food allergy and should be considered when diagnosing and treating pollen-food allergy

    Co-sensitization graph of TLP allergens.

    No full text
    <p>Each node represents one allergen (TLP as white ellipses, non-TLP allergens as blue square nodes, and LTP-allergen Pru p 3 as a green diamond) and the links represent co-sensitization of one or more sera for the linked allergens. The weight of each link, ranging between 0 and 1, measures the degree of co-sensitization. For the sake of clarity, only the 25 links of weight greater than 0.50 out of the total 253 existing links were plotted.</p
    corecore