20 research outputs found

    Subtyping patients with heroin addiction at treatment entry: factor derived from the Self-Report Symptom Inventory (SCL-90)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Addiction is a relapsing chronic condition in which psychiatric phenomena play a crucial role. Psychopathological symptoms in patients with heroin addiction are generally considered to be part of the drug addict's personality, or else to be related to the presence of psychiatric comorbidity, raising doubts about whether patients with long-term abuse of opioids actually possess specific psychopathological dimensions.</p> <p>Methods</p> <p>Using the Self-Report Symptom Inventory (SCL-90), we studied the psychopathological dimensions of 1,055 patients with heroin addiction (884 males and 171 females) aged between 16 and 59 years at the beginning of treatment, and their relationship to age, sex and duration of dependence.</p> <p>Results</p> <p>A total of 150 (14.2%) patients with heroin addiction showed depressive symptomatology characterised by feelings of worthlessness and being trapped or caught; 257 (24.4%) had somatisation symptoms, 205 (19.4%) interpersonal sensitivity and psychotic symptoms, 235 (22.3%) panic symptomatology, 208 (19.7%) violence and self-aggression. These dimensions were not correlated with sex or duration of dependence. Younger patients with heroin addiction were characterised by higher scores for violence-suicide, sensitivity and panic anxiety symptomatology. Older patients with heroin addiction showed higher scores for somatisation and worthlessness-being trapped symptomatology.</p> <p>Conclusions</p> <p>This study supports the hypothesis that mood, anxiety and impulse-control dysregulation are the core of the clinical phenomenology of addiction and should be incorporated into its nosology.</p

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.Peer reviewe

    Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the Field

    Get PDF
    Bacillus thuringiensis (Bt) and its insecticidal toxins are widely exploited in microbial biopesticides and genetically modified crops. Its population biology is, however, poorly understood. Important issues for the safe, sustainable exploitation of Bt include understanding how selection maintains expression of insecticidal toxins in nature, whether entomopathogenic Bt is ecologically distinct from related human pathogens in the Bacillus cereus group, and how the use of microbial pesticides alters natural bacterial populations. We addressed these questions with a MLST scheme applied to a field experiment in which we excluded/added insect hosts and microbial pesticides in a factorial design. The presence of insects increased the density of Bt/B. cereus in the soil and the proportion of strains expressing insecticidal toxins. We found a near-epidemic population structure dominated by a single entomopathogenic genotype (ST8) in sprayed and unsprayed enclosures. Biopesticidal ST8 proliferated in hosts after spraying but was also found naturally associated with leaves more than any other genotype. In an independent experiment several ST8 isolates proved better than a range of non-pathogenic STs at endophytic and epiphytic colonization of seedlings from soil. This is the first experimental demonstration of Bt behaving as a specialized insect pathogen in the field. These data provide a basis for understanding both Bt ecology and the influence of anthropogenic factors on Bt populations. This natural population of Bt showed habitat associations and a population structure that differed markedly from previous MLST studies of less ecologically coherent B. cereus sample collections. The host-specific adaptations of ST8, its close association with its toxin plasmid and its high prevalence within its clade are analogous to the biology of Bacillus anthracis. This prevalence also suggests that selection for resistance to the insecticidal toxins of ST8 will have been stronger than for other toxin classes

    Towards a better understanding of nuclear processes based on proteomics

    No full text
    The complex structural and functional organisation of the brain warrants the application of high-throughput approaches to study its functional alterations in physiological and pathological conditions. Such approaches have greatly benefited from advances in proteomics and genomics, and from their combination with computational modelling. They have been particularly instrumental for the analysis of processes such as the post-translational modification (PTM) of proteins, a critical biological process in the nervous system that remains not well studied. Protein PTMs are dynamic covalent marks that can be induced by activity and allow the maintenance of a trace of this activity. In the nucleus, they can modulate histone proteins and the components of the transcriptional machinery, and thereby contribute to regulating gene expression. PTMs do however need to be tightly controlled for proper chromatin functions. This review provides a synopsis of methods available to study PTMs and protein expression based on high-throughput mass spectrometry (MS), and covers basic concepts of traditional 'shot-gun'-based MS. It describes classical and emerging proteomic approaches such as multiple reaction monitoring and electron transfer dissociation, and their application to the analyses of nuclear processes in the brain
    corecore