554 research outputs found

    Improving the performance of bright quantum dot single photon sources using amplitude modulation

    Get PDF
    Single epitaxially-grown semiconductor quantum dots have great potential as single photon sources for photonic quantum technologies, though in practice devices often exhibit non-ideal behavior. Here, we demonstrate that amplitude modulation can improve the performance of quantum-dot-based sources. Starting with a bright source consisting of a single quantum dot in a fiber-coupled microdisk cavity, we use synchronized amplitude modulation to temporally filter the emitted light. We observe that the single photon purity, temporal overlap between successive emission events, and indistinguishability can be greatly improved with this technique. As this method can be applied to any triggered single photon source, independent of geometry and after device fabrication, it is a flexible approach to improve the performance of solid-state systems, which often suffer from excess dephasing and multi-photon background emission

    Pediatric Cushing disease: disparities in disease severity and outcomes in the Hispanic and African-American populations.

    Get PDF
    BackgroundLittle is known about the contribution of racial and socioeconomic disparities to severity and outcomes in children with Cushing disease (CD).MethodsA total of 129 children with CD, 45 Hispanic/Latino or African-American (HI/AA) and 84 non-Hispanic White (non-HW), were included in this study. A 10-point index for rating severity (CD severity) incorporated the degree of hypercortisolemia, glucose tolerance, hypertension, anthropomorphic measurements, disease duration, and tumor characteristics. Race, ethnicity, age, gender, local obesity prevalence, estimated median income, and access to care were assessed in regression analyses of CD severity.ResultsThe mean CD severity in the HI/AA group was worse than that in the non-HW group (4.9±2.0 vs. 4.1±1.9, P=0.023); driving factors included higher cortisol levels and larger tumor size. Multiple regression models confirmed that race (P=0.027) and older age (P=0.014) were the most important predictors of worse CD severity. When followed up a median of 2.3 years after surgery, the relative risk for persistent CD combined with recurrence was 2.8 times higher in the HI/AA group compared with that in the non-HW group (95% confidence interval: 1.2-6.5).ConclusionOur data show that the driving forces for the discrepancy in severity of CD are older age and race/ethnicity. Importantly, the risk for persistent and recurrent CD was higher in minority children

    Opportunities for improving pLDH-based malaria diagnostic tests

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monoclonal antibodies to <it>Plasmodium </it>lactate dehydrogenase (pLDH) have been previously used to format immunochromatographic tests for the diagnosis of malaria. Using pLDH as an antigen has several advantages as a sensitive measure of the presence of parasites within patient blood samples. However, variable results in terms of specificity and sensitivity among different commercially available diagnostic kits have been reported and it has not been clear from these studies whether the performance of an individual test is due simply to how it is engineered or whether it is due to the biochemical nature of the pLDH-antibody reaction itself.</p> <p>Methods</p> <p>A series of systematic studies to determine how various pLDH monoclonal antibodies work in combination was undertaken. Different combinations of anti-pLDH monoclonal antibodies were used in a rapid-test immunochromatographic assay format to determine parameters of sensitivity and specificity with regard to individual <it>Plasmodium </it>species.</p> <p>Results</p> <p>Dramatic differences were found in both species specificity and overall sensitivity depending on which antibody is used on the immunochromatographic strip and which is used on the colorimetric colloidal-gold used for visual detection.</p> <p>Discussion</p> <p>The results demonstrate the feasibility of different test formats for the detection and speciation of malarial infections. In addition, the data will enable the development of a universal rapid test algorithm that may potentially provide a cost-effective strategy to diagnose and manage patients in a wide range of clinical settings.</p> <p>Conclusion</p> <p>These data emphasize that using different anti-pLDH antibody combinations offers a tractable way to optimize immunochromatographic pLDH tests.</p

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics

    Get PDF
    Ultrafast Electron Microscopy (UEM) has been demonstrated to be an effective table-top technique for imaging the temporally-evolving dynamics of matter with subparticle spatial resolution on the time scale of atomic motion. However, imaging the faster motion of electron dynamics in real time has remained beyond reach. Here, we demonstrate more than an order of magnitude (16 times) enhancement in the typical temporal resolution of UEM by generating isolated 30 fs electron pulses, accelerated at 200 keV, via the optical-gating approach, with sufficient intensity for efficiently probing the electronic dynamics of matter. Moreover, we investigate the feasibility of attosecond optical gating to generate isolated subfemtosecond electron pulses, attaining the desired temporal resolution in electron microscopy for establishing the Attomicroscopy to allow the imaging of electron motion in the act.Comment: 19 Pages, 4 Figure

    Nucleic acid extraction from formalin-fixed paraffin-embedded cancer cell line samples: a trade off between quantity and quality?

    Get PDF
    Background: Advanced genomic techniques such as Next-Generation-Sequencing (NGS) and gene expression profiling, including NanoString, are vital for the development of personalised medicines, as they enable molecular disease classification. This has become increasingly important in the treatment of cancer, aiding patient selection. However, it requires efficient nucleic acid extraction often from formalin-fixed paraffin-embedded tissue (FFPE). Methods: Here we provide a comparison of several commercially available manual and automated methods for DNA and/or RNA extraction from FFPE cancer cell line samples from Qiagen, life Technologies and Promega. Differing extraction geometric mean yields were evaluated across each of the kits tested, assessing dual DNA/RNA extraction vs. specialised single extraction, manual silica column based extraction techniques vs. automated magnetic bead based methods along with a comparison of subsequent nucleic acid purity methods, providing a full evaluation of nucleic acids isolated. Results: Out of the four RNA extraction kits evaluated the RNeasy FFPE kit, from Qiagen, gave superior geometric mean yields, whilst the Maxwell 16 automated method, from Promega, yielded the highest quality RNA by quantitative real time RT-PCR. Of the DNA extraction kits evaluated the PicoPure DNA kit, from Life Technologies, isolated 2–14× more DNA. A miniaturised qPCR assay was developed for DNA quantification and quality assessment. Conclusions: Careful consideration of an extraction kit is necessary dependent on quality or quantity of material required. Here we provide a flow diagram on the factors to consider when choosing an extraction kit as well as how to accurately quantify and QC the extracted material

    High Quality Genomic Copy Number Data from Archival Formalin-Fixed Paraffin-Embedded Leiomyosarcoma: Optimisation of Universal Linkage System Labelling

    Get PDF
    Most soft tissue sarcomas are characterized by genetic instability and frequent genomic copy number aberrations that are not subtype-specific. Oligonucleotide microarray-based Comparative Genomic Hybridisation (array CGH) is an important technique used to map genome-wide copy number aberrations, but the traditional requirement for high-quality DNA typically obtained from fresh tissue has limited its use in sarcomas. Although large archives of Formalin-fixed Paraffin-embedded (FFPE) tumour samples are available for research, the degradative effects of formalin on DNA from these tissues has made labelling and analysis by array CGH technically challenging. The Universal Linkage System (ULS) may be used for a one-step chemical labelling of such degraded DNA. We have optimised the ULS labelling protocol to perform aCGH on archived FFPE leiomyosarcoma tissues using the 180k Agilent platform. Preservation age of samples ranged from a few months to seventeen years and the DNA showed a wide range of degradation (when visualised on agarose gels). Consistently high DNA labelling efficiency and low microarray probe-to-probe variation (as measured by the derivative log ratio spread) was seen. Comparison of paired fresh and FFPE samples from identical tumours showed good correlation of CNAs detected. Furthermore, the ability to macro-dissect FFPE samples permitted the detection of CNAs that were masked in fresh tissue. Aberrations were visually confirmed using Fluorescence in situ Hybridisation. These results suggest that archival FFPE tissue, with its relative abundance and attendant clinical data may be used for effective mapping for genomic copy number aberrations in such rare tumours as leiomyosarcoma and potentially unravel clues to tumour origins, progression and ultimately, targeted treatment

    Ventilator-associated pneumonia in children after cardiac surgery in The Netherlands

    Get PDF
    We conducted a retrospective cohort study in an academic tertiary care center to characterize ventilator-associated pneumonia (VAP) in pediatric patients after cardiac surgery in The Netherlands. All patients following cardiac surgery and mechanically ventilated for ≥24 h were included. The primary outcome was development of VAP. Secondary outcomes were duration of mechanical ventilation and length of ICU stay. A total of 125 patients were enrolled. Their mean age was 16.5 months. The rate of VAP was 17.1/1,000 mechanical ventilation days. Frequently found organisms were Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus and Pseudomonas aeruginosa. Patients with VAP had longer duration of ventilation and longer ICU stay. Risk factors associated with the development of VAP were a PRISM III score of ≥10 and transfusion of fresh frozen plasma. The mean VAP rate in this population is higher than that reported in general pediatric ICU populations. Children with VAP had a prolonged need for mechanical ventilation and a longer ICU sta
    corecore