758 research outputs found

    Azoniaspiro salts: towards bridging the gap between room-temperature ionic liquids and molten salts.

    No full text
    In a continued effort to improve the suitability of ionic liquids in applications operating at raised temperatures, novel spirocyclic 'azoniaspiro' salts (with cations derived from five-, six-, seven-and eight-membered rings) are prepared and characterised. The structural and thermal properties of these salts are compared against those of established analogues. The stable geometries and ion pairing behaviour of these species are investigated via a combined experimental/computational approach, employing X-ray crystallography and Density Functional Theory (DFT) methods. Subsequently, the thermal stabilities of these organic salts are characterised and compared using a broad range of techniques. Hyphenated Thermogravimetry-Mass Spectrometry investigations enable complex mechanisms underlying thermal decomposition to be elucidated. Lastly, transition state structures are optimised, corresponding to plausible decomposition mechanisms of the azoniaspiro salt, 6-azoniaspiro[6.5]dodecanium chloride, and one prototypical monocyclic species 1-butyl-1-methylpiperidinium chloride, using DFT. The observed improved thermal stabilities of the azoniaspiro salts, and their potential higher-temperature stable-liquid ranges, render them promising candidates for future ionic liquid applications

    Programmed Iteration Controls the Assembly of the Nonanoic Acid Side Chain of the Antibiotic Mupirocin

    Get PDF
    \ua9 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or “stuttering” KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol)

    Carboxyhaemoglobin levels and their determinants in older British men

    Get PDF
    Background: Although there has been concern about the levels of carbon monoxide exposure, particularly among older people, little is known about COHb levels and their determinants in the general population. We examined these issues in a study of older British men.Methods: Cross-sectional study of 4252 men aged 60-79 years selected from one socially representative general practice in each of 24 British towns and who attended for examination between 1998 and 2000. Blood samples were measured for COHb and information on social, household and individual factors assessed by questionnaire. Analyses were based on 3603 men measured in or close to (< 10 miles) their place of residence.Results: The COHb distribution was positively skewed. Geometric mean COHb level was 0.46% and the median 0.50%; 9.2% of men had a COHb level of 2.5% or more and 0.1% of subjects had a level of 7.5% or more. Factors which were independently related to mean COHb level included season (highest in autumn and winter), region (highest in Northern England), gas cooking (slight increase) and central heating (slight decrease) and active smoking, the strongest determinant. Mean COHb levels were more than ten times greater in men smoking more than 20 cigarettes a day (3.29%) compared with non-smokers (0.32%); almost all subjects with COHb levels of 2.5% and above were smokers (93%). Pipe and cigar smoking was associated with more modest increases in COHb level. Passive cigarette smoking exposure had no independent association with COHb after adjustment for other factors. Active smoking accounted for 41% of variance in COHb level and all factors together for 47%.Conclusion: An appreciable proportion of men have COHb levels of 2.5% or more at which symptomatic effects may occur, though very high levels are uncommon. The results confirm that smoking (particularly cigarette smoking) is the dominant influence on COHb levels

    Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle

    Get PDF
    gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle

    Frequency and outcomes of gastrostomy insertion in a longitudinal cohort study of atypical parkinsonism

    Get PDF
    \ua9 2024 The Authors. European Journal of Neurology published by John Wiley &amp; Sons Ltd on behalf of European Academy of Neurology.Background: Multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) show a high prevalence and rapid progression of dysphagia, which is associated with reduced survival. Despite this, the evidence base for gastrostomy is poor, and the optimal frequency and outcomes of this intervention are not known. We aimed to characterise the prevalence and outcomes of gastrostomy in patients with these three atypical parkinsonian disorders. Method: We analysed data from the natural history and longitudinal cohorts of the PROSPECT-M-UK study with up to 60 months of follow-up from baseline. Survival post-gastrostomy was analysed using Kaplan–Meier survival curves. Results: In a total of 339 patients (mean age at symptom onset 63.3 years, mean symptom duration at baseline 4.6 years), dysphagia was present in &gt;50% across all disease groups at baseline and showed rapid progression during follow-up. Gastrostomy was recorded as recommended in 44 (13%) and performed in 21 (6.2%; MSA 7, PSP 11, CBS 3) of the total study population. Median survival post-gastrostomy was 24 months compared with 12 months where gastrostomy was recommended but not done (p = 0.008). However, this was not significant when correcting for age and duration of symptoms at the time of procedure or recommendation. Conclusions: Gastrostomy was performed relatively infrequently in this cohort despite the high prevalence of dysphagia. Survival post-gastrostomy was longer than previously reported, but further data on other outcomes and clinician and patient perspectives would help to guide use of this intervention in MSA, PSP and CBS

    Cellular changes in boric acid-treated DU-145 prostate cancer cells

    Get PDF
    Epidemiological, animal, and cell culture studies have identified boron as a chemopreventative agent in prostate cancer. The present objective was to identify boron-induced changes in the DU-145 human prostate cancer cell line. We show that prolonged exposure to pharmacologically-relevant levels of boric acid, the naturally occurring form of boron circulating in human plasma, induces the following morphological changes in cells: increases in granularity and intracellular vesicle content, enhanced cell spreading and decreased cell volume. Documented increases in β-galactosidase activity suggest that boric acid induces conversion to a senescent-like cellular phenotype. Boric acid also causes a dose-dependent reduction in cyclins A–E, as well as MAPK proteins, suggesting their contribution to proliferative inhibition. Furthermore, treated cells display reduced adhesion, migration and invasion potential, along with F-actin changes indicative of reduced metastatic potential. Finally, the observation of media acidosis in treated cells correlated with an accumulation of lysosome-associated membrane protein type 2 (LAMP-2)-negative acidic compartments. The challenge of future studies will be to identify the underlying mechanism responsible for the observed cellular responses to this natural blood constituent

    Readthrough of Premature Termination Codons in the Adenomatous Polyposis Coli Gene Restores Its Biological Activity in Human Cancer Cells

    Get PDF
    The APC tumor suppressor gene is frequently mutated in human colorectal cancer, with nonsense mutations accounting for 30% of all mutations in this gene. Reintroduction of the WT APC gene into cancer cells generally reduces tumorigenicity or induces apoptosis. In this study, we explored the possibility of using drugs to induce premature termination codon (PTC) readthrough (aminoglycosides, negamycin), as a means of reactivating endogenous APC. By quantifying the readthrough of 11 nonsense mutations in APC, we were able to identify those giving the highest levels of readthrough after treatment. For these mutations, we demonstrated that aminoglycoside or negamycin treatment led to a recovery of the biological activity of APC in cancer cell lines, and showed that the level of APC activity was proportional to the level of induced readthrough. These findings show that treatment with readthrough inducers should be considered as a potential strategy for treating cancers caused by nonsense mutations APC gene. They also provide a rational basis for identifying mutations responsive to readthrough inducers

    Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach

    Get PDF
    Background: In this study, we quantified age-related changes in the time-course of face processing by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our approach does not rely on peak measurements and can provide a more sensitive measure of processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded discrimination task between two faces. The phase spectrum of these faces was manipulated parametrically to create pictures that ranged between pure noise (0% phase information) and the undistorted signal (100% phase information), with five intermediate steps. Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was higher, in younger than older observers. ERPs from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The earliest age-related ERP differences occurred in the time window of the N170. Older observers had a significantly stronger N170 in response to noise, but this age difference decreased with increasing phase information. Overall, manipulating image phase information had a greater effect on ERPs from younger observers, which was quantified using a hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower processing in older observers starting around 120 ms after stimulus onset. This age-related delay increased over time to reach a maximum around 190 ms, at which latency younger observers had around 50 ms time lead over older observers. Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual system sensitivity to image structure, the current study demonstrates that older observers accumulate face information more slowly than younger subjects. Additionally, the N170 appears to be less face-sensitive in older observers

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Snail1 factor behaves as a therapeutic target in renal fibrosis.

    Get PDF
    Kidney fibrosis is a devastating disease that leads to organ failure, and no specific treatment is available to preserve organ function. In fibrosis, myofibroblasts accumulate in the interstitium leading to massive deposition of extracellular matrix and organ disfunction. The origin of myofibroblasts is multiple and the contribution of renal epithelial cells after undergoing epithelial-to-mesenchymal transition (EMT) is still debated. In a model unable to reactivate the EMT inducer Snail1 upon damage, we show that Snail1 is required in renal epithelial cells for the development of fibrosis. Damage-mediated Snail1 reactivation induces a partial EMT that relays fibrotic and inflammatory signals to the interstitium through the activation of TGF-β and NF-B pathways. Snail1-induced fibrosis can be reverted in vivo and inhibiting Snail1 in a model of obstructive nephropathy highly ameliorates fibrosis. These results reconcile conflicting data on the role of EMT in renal fibrosis and provide avenues for the design of antifibrotic therapies.pre-print8435 K
    corecore