111 research outputs found

    The effect of a sports chiropractic manual therapy intervention on the prevention of back pain, hamstring and lower limb injuries in semi-elite Australian Rules footballers: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hamstring injuries are the most common injury in Australian Rules football. It was the aims to investigate whether a sports chiropractic manual therapy intervention protocol provided in addition to the current best practice management could prevent the occurrence of and weeks missed due to hamstring and other lower-limb injuries at the semi-elite level of Australian football.</p> <p>Methods</p> <p>Sixty male subjects were assessed for eligibility with 59 meeting entry requirements and randomly allocated to an intervention (n = 29) or control group (n = 30), being matched for age and hamstring injury history. Twenty-eight intervention and 29 control group participants completed the trial. Both groups received the current best practice medical and sports science management, which acted as the control. Additionally, the intervention group received a sports chiropractic intervention. Treatment for the intervention group was individually determined and could involve manipulation/mobilization and/or soft tissue therapies to the spine and extremity. Minimum scheduling was: 1 treatment per week for 6 weeks, 1 treatment per fortnight for 3 months, 1 treatment per month for the remainder of the season (3 months). The main outcome measure was an injury surveillance with a missed match injury definition.</p> <p>Results</p> <p>After 24 matches there was no statistical significant difference between the groups for the incidence of hamstring injury (OR:0.116, 95% CI:0.013-1.019, p = 0.051) and primary non-contact knee injury (OR:0.116, 95% CI:0.013-1.019, p = 0.051). The difference for primary lower-limb muscle strains was significant (OR:0.097, 95%CI:0.011-0.839, p = 0.025). There was no significant difference for weeks missed due to hamstring injury (4 v14, χ2:1.12, p = 0.29) and lower-limb muscle strains (4 v 21, χ2:2.66, p = 0.10). A significant difference in weeks missed due to non-contact knee injury was noted (1 v 24, χ2:6.70, p = 0.01).</p> <p>Conclusions</p> <p>This study demonstrated a trend towards lower limb injury prevention with a significant reduction in primary lower limb muscle strains and weeks missed due to non-contact knee injuries through the addition of a sports chiropractic intervention to the current best practice management.</p> <p>Trial registration</p> <p>The study was registered with the Australian and New Zealand Clinical Trials Registry (ACTRN12608000533392).</p

    A descriptive study of a manual therapy intervention within a randomised controlled trial for hamstring and lower limb injury prevention

    Get PDF
    The journal has been informed by its publisher BioMed Central that contrary to the statement in this article [Wayne Hoskins, Henry Pollard, Chiropractic & Osteopathy 2010, 18:23], they have been advised by the authors' institution Macquarie University, that its Human Research Ethics Committee did not approve this study. Because the study was conducted without institutional ethics committee approval it has been retracted

    Systems Integration of Biodefense Omics Data for Analysis of Pathogen-Host Interactions and Identification of Potential Targets

    Get PDF
    The NIAID (National Institute for Allergy and Infectious Diseases) Biodefense Proteomics program aims to identify targets for potential vaccines, therapeutics, and diagnostics for agents of concern in bioterrorism, including bacterial, parasitic, and viral pathogens. The program includes seven Proteomics Research Centers, generating diverse types of pathogen-host data, including mass spectrometry, microarray transcriptional profiles, protein interactions, protein structures and biological reagents. The Biodefense Resource Center (www.proteomicsresource.org) has developed a bioinformatics framework, employing a protein-centric approach to integrate and support mining and analysis of the large and heterogeneous data. Underlying this approach is a data warehouse with comprehensive protein + gene identifier and name mappings and annotations extracted from over 100 molecular databases. Value-added annotations are provided for key proteins from experimental findings using controlled vocabulary. The availability of pathogen and host omics data in an integrated framework allows global analysis of the data and comparisons across different experiments and organisms, as illustrated in several case studies presented here. (1) The identification of a hypothetical protein with differential gene and protein expressions in two host systems (mouse macrophage and human HeLa cells) infected by different bacterial (Bacillus anthracis and Salmonella typhimurium) and viral (orthopox) pathogens suggesting that this protein can be prioritized for additional analysis and functional characterization. (2) The analysis of a vaccinia-human protein interaction network supplemented with protein accumulation levels led to the identification of human Keratin, type II cytoskeletal 4 protein as a potential therapeutic target. (3) Comparison of complete genomes from pathogenic variants coupled with experimental information on complete proteomes allowed the identification and prioritization of ten potential diagnostic targets from Bacillus anthracis. The integrative analysis across data sets from multiple centers can reveal potential functional significance and hidden relationships between pathogen and host proteins, thereby providing a systems approach to basic understanding of pathogenicity and target identification

    COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access

    Get PDF
    Metabolomics has become a crucial phenotyping technique in a range of research fields including medicine, the life sciences, biotechnology and the environmental sciences. This necessitates the transfer of experimental information between research groups, as well as potentially to publishers and funders. After the initial efforts of the metabolomics standards initiative, minimum reporting standards were proposed which included the concepts for metabolomics databases. Built by the community, standards and infrastructure for metabolomics are still needed to allow storage, exchange, comparison and re-utilization of metabolomics data. The Framework Programme 7 EU Initiative ‘coordination of standards in metabolomics’ (COSMOS) is developing a robust data infrastructure and exchange standards for metabolomics data and metadata. This is to support workflows for a broad range of metabolomics applications within the European metabolomics community and the wider metabolomics and biomedical communities’ participation. Here we announce our concepts and efforts asking for re-engagement of the metabolomics community, academics and industry, journal publishers, software and hardware vendors, as well as those interested in standardisation worldwide (addressing missing metabolomics ontologies, complex-metadata capturing and XML based open source data exchange format), to join and work towards updating and implementing metabolomics standards

    Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening

    Get PDF
    Forward genetic screens are powerful tools for the unbiased discovery and functional characterization of specific genetic elements associated with a phenotype of interest. Recently, the RNA-guided endonuclease Cas9 from the microbial CRISPR (clustered regularly interspaced short palindromic repeats) immune system has been adapted for genome-scale screening by combining Cas9 with pooled guide RNA libraries. Here we describe a protocol for genome-scale knockout and transcriptional activation screening using the CRISPR-Cas9 system. Custom- or ready-made guide RNA libraries are constructed and packaged into lentiviral vectors for delivery into cells for screening. As each screen is unique, we provide guidelines for determining screening parameters and maintaining sufficient coverage. To validate candidate genes identified by the screen, we further describe strategies for confirming the screening phenotype, as well as genetic perturbation, through analysis of indel rate and transcriptional activation. Beginning with library design, a genome-scale screen can be completed in 9-15 weeks, followed by 4-5 weeks of validation.Paul & Daisy Soros Fellowships for New Americans (New York, N.Y.)McGovern Institute for Brain Research at MIT (Friends of McGovern Institute Fellowship)Massachusetts Institute of Technology. Poitras Center for Affective Disorders ResearchUnited States. Department of Energy (Computational Science Graduate Fellowship)National Institute of Mental Health (U.S.) (5DP1-MH100706)National Institute of Mental Health (U.S.) (1R01-MH110049)New York Stem Cell FoundationPoitras FoundationSimons FoundationPaul G. Allen Family FoundationVallee FoundationTom HarrimanB. Metcalf

    Escherichia coli genome-wide promoter analysis: Identification of additional AtoC binding target elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies on bacterial signal transduction systems have revealed complex networks of functional interactions, where the response regulators play a pivotal role. The AtoSC system of <it>E. coli </it>activates the expression of <it>atoDAEB </it>operon genes, and the subsequent catabolism of short-chain fatty acids, upon acetoacetate induction. Transcriptome and phenotypic analyses suggested that <it>atoSC </it>is also involved in several other cellular activities, although we have recently reported a palindromic repeat within the <it>atoDAEB </it>promoter as the single, <it>cis</it>-regulatory binding site of the AtoC response regulator. In this work, we used a computational approach to explore the presence of yet unidentified AtoC binding sites within other parts of the <it>E. coli </it>genome.</p> <p>Results</p> <p>Through the implementation of a computational <it>de novo </it>motif detection workflow, a set of candidate motifs was generated, representing putative AtoC binding targets within the <it>E. coli </it>genome. In order to assess the biological relevance of the motifs and to select for experimental validation of those sequences related robustly with distinct cellular functions, we implemented a novel approach that applies Gene Ontology Term Analysis to the motif hits and selected those that were qualified through this procedure. The computational results were validated using Chromatin Immunoprecipitation assays to assess the <it>in vivo </it>binding of AtoC to the predicted sites. This process verified twenty-two additional AtoC binding sites, located not only within intergenic regions, but also within gene-encoding sequences.</p> <p>Conclusions</p> <p>This study, by tracing a number of putative AtoC binding sites, has indicated an AtoC-related cross-regulatory function. This highlights the significance of computational genome-wide approaches in elucidating complex patterns of bacterial cell regulation.</p

    Consumer-Led Screening for Atrial Fibrillation: Frontier Review of the AF-SCREEN International Collaboration.

    Get PDF
    The technological evolution and widespread availability of wearables and handheld ECG devices capable of screening for atrial fibrillation (AF), and their promotion directly to consumers, has focused attention of health care professionals and patient organizations on consumer-led AF screening. In this Frontiers review, members of the AF-SCREEN International Collaboration provide a critical appraisal of this rapidly evolving field to increase awareness of the complexities and uncertainties surrounding consumer-led AF screening. Although there are numerous commercially available devices directly marketed to consumers for AF monitoring and identification of unrecognized AF, health care professional-led randomized controlled studies using multiple ECG recordings or continuous ECG monitoring to detect AF have failed to demonstrate a significant reduction in stroke. Although it remains uncertain if consumer-led AF screening reduces stroke, it could increase early diagnosis of AF and facilitate an integrated approach, including appropriate anticoagulation, rate or rhythm management, and risk factor modification to reduce complications. Companies marketing AF screening devices should report the accuracy and performance of their products in high- and low-risk populations and avoid claims about clinical outcomes unless improvement is demonstrated in randomized clinical trials. Generally, the diagnostic yield of AF screening increases with the number, duration, and temporal dispersion of screening sessions, but the prognostic importance may be less than for AF detected by single-time point screening, which is largely permanent, persistent, or high-burden paroxysmal AF. Consumer-initiated ECG recordings suggesting possible AF always require confirmation by a health care professional experienced in ECG reading, whereas suspicion of AF on the basis of photoplethysmography must be confirmed with an ECG. Consumer-led AF screening is unlikely to be cost-effective for stroke prevention in the predominantly young, early adopters of this technology. Studies in older people at higher stroke risk are required to demonstrate both effectiveness and cost-effectiveness. The direct interaction between companies and consumers creates new regulatory gaps in relation to data privacy and the registration of consumer apps and devices. Although several barriers for optimal use of consumer-led screening exist, results of large, ongoing trials, powered to detect clinical outcomes, are required before health care professionals should support widespread adoption of consumer-led AF screening

    Differential flow improvements after valve replacements in bicuspid aortic valve disease: a cardiovascular magnetic resonance assessment

    Get PDF
    Background Abnormal aortic flow patterns in bicuspid aortic valve disease (BAV) may be partly responsible for the associated aortic dilation. Aortic valve replacement (AVR) may normalize flow patterns and potentially slow the concomitant aortic dilation. We therefore sought to examine differences in flow patterns post AVR. Methods Ninety participants underwent 4D flow cardiovascular magnetic resonance: 30 BAV patients with prior AVR (11 mechanical, 10 bioprosthetic, 9 Ross procedure), 30 BAV patients with a native aortic valve and 30 healthy subjects. Results The majority of subjects with mechanical AVR or Ross showed normal flow pattern (73% and 67% respectively) with near normal rotational flow values (7.2 ± 3.9 and 10.6 ± 10.5 mm2/ms respectively vs 3.8 ± 3.1 mm2/s for healthy subjects; both p > 0.05); and reduced in-plane wall shear stress (0.19 ± 0.13 N/m2for mechanical AVR vs. 0.40 ± 0.28 N/m2 for native BAV, p  0.05), and a similar pattern for wall shear stress. Data before and after AVR (n = 16) supported these findings: mechanical AVR showed a significant reduction in rotational flow (30.4 ± 16.3 → 7.3 ± 4.1 mm2/ms; p < 0.05) and in-plane wall shear stress (0.47 ± 0.20 → 0.20 ± 0.13 N/m2; p < 0.05), whereas these parameters remained similar in the bioprosthetic AVR group. Conclusions Abnormal flow patterns in BAV disease tend to normalize after mechanical AVR or Ross procedure, in contrast to the remnant abnormal flow pattern after bioprosthetic AVR. This may in part explain different aortic growth rates post AVR in BAV observed in the literature, but requires confirmation in a prospective study
    • …
    corecore