499 research outputs found

    RNA secondary structure prediction from multi-aligned sequences

    Full text link
    It has been well accepted that the RNA secondary structures of most functional non-coding RNAs (ncRNAs) are closely related to their functions and are conserved during evolution. Hence, prediction of conserved secondary structures from evolutionarily related sequences is one important task in RNA bioinformatics; the methods are useful not only to further functional analyses of ncRNAs but also to improve the accuracy of secondary structure predictions and to find novel functional RNAs from the genome. In this review, I focus on common secondary structure prediction from a given aligned RNA sequence, in which one secondary structure whose length is equal to that of the input alignment is predicted. I systematically review and classify existing tools and algorithms for the problem, by utilizing the information employed in the tools and by adopting a unified viewpoint based on maximum expected gain (MEG) estimators. I believe that this classification will allow a deeper understanding of each tool and provide users with useful information for selecting tools for common secondary structure predictions.Comment: A preprint of an invited review manuscript that will be published in a chapter of the book `Methods in Molecular Biology'. Note that this version of the manuscript may differ from the published versio

    Mach's Principle and the Origin of Inertia

    Full text link
    The current status of Mach's principle is discussed within the context of general relativity. The inertial properties of a particle are determined by its mass and spin, since these characterize the irreducible unitary representations of the inhomogeneous Lorentz group. The origin of the inertia of mass and intrinsic spin are discussed and the inertia of intrinsic spin is studied via the coupling of intrinsic spin with rotation. The implications of spin-rotation coupling and the possibility of history dependence and nonlocality in relativistic physics are briefly mentioned.Comment: 14 pages. Dedicated to Carl Brans in honor of his 80th birthday. To appear in the Brans Festschrift; v2: typo corrected, published in: At the Frontier of Spacetime, edited by T. Asselmeyer-Maluga (Springer, 2016), Chapter 10, pp. 177-18

    A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    Get PDF
    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol

    Expression of MK-1 and RegⅣ and its clinicopathological significances in the benign and malignant lesions of gallbladder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To study the expression of MK-1 and RegⅣ and to detect their pathological significances in benign and malignant lesions of gallbladder.</p> <p>Methods</p> <p>The expression of MK-1 and RegⅣ was detected by immunohistochemical method in paraffin-embedded sections of surgical resected specimens from gallbladder adenocarcinoma (n = 108), peritumoral tissues (n = 46), adenomatous polyp (n = 15), and chronic cholecystitis (n = 35).</p> <p>Results</p> <p>The positive rate of MK-1 or RegⅣ expression was significantly higher in gallbladder adenocarcinoma than that in peritumoral tissues (χ<sup>2</sup><sub>MK-1 </sub>= 18.76, <it>P </it>< 0.01; χ<sup>2</sup><sub>RegⅣ </sub>= 9.92, <it>P </it>< 0.01), denomatous polyp (χ<sup>2</sup><sub>MK-1 </sub>= 9.49, <it>P </it>< 0.01; χ<sup>2</sup><sub>RegⅣ </sub>= 8.59, <it>P </it>< 0.01) and chronic cholecystitis (χ<sup>2</sup><sub>MK-1 </sub>= 24.11, <it>P </it>< 0.01; χ<sup>2</sup><sub>RegⅣ </sub>= 19.24, <it>P </it>< 0.01). The positive cases of MK-1 and/or RegⅣ in the benign lesions showed moderately- or severe-atypical hyperplasia of gallbladder epitheli. The positive rates of MK-1 were significantly higher in the cases of well-differentiated adenocarcinoma, no-metastasis of lymph node, and no-invasiveness of regional tissues than those in the ones of differentiated adenocarcinoma, metastasis of lymph node, and invasiveness of regional tissues in gallbladder adenocarcinoma (<it>P </it>< 0.05 or <it>P </it>< 0.01). On the contrary, the positive rates of RegⅣ were significantly lower in the cases of well-differentiated adenocarcinoma, no-metastasis of lymph node, and no-invasiveness of regional tissues than those in the ones of differentiated adenocarcinoma, metastasis of lymph node, and invasiveness of regional tissues in gallbladder adenocarcinoma (<it>P </it>< 0.05 or <it>P </it>< 0.01). Univariate Kaplan-Meier analysis showed that decreased expression of MK-1 (<it>P </it>= 0.09) or increased expression of RegⅣ (<it>P </it>= 0.003) was associated with decreased overall survival. Multivariate Cox regression analysis showed that decreased expression of MK-1 (<it>P </it>= 0.033) and increased expression of RegⅣ (<it>P </it>= 0.008) was an independent prognostic predictor in gallbladder adenocarcinoma.</p> <p>Conclusions</p> <p>The expression of MK-1 and/or RegⅣ might be closely related to the carcinogenesis, clinical biological behaviors, and prognosis of gallbladder adenocarcinoma.</p

    The regulatory subunit of PKA-I remains partially structured and undergoes β-aggregation upon thermal denaturation

    Get PDF
    Background: The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B. Methodology/Principal Findings: As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212-216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. Conclusions/Significance: Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation. © 2011 Dao et al

    Bves Modulates Tight Junction Associated Signaling

    Get PDF
    Blood vessel epicardial substance (Bves) is a transmembrane adhesion protein that regulates tight junction (TJ) formation in a variety of epithelia. The role of TJs within epithelium extends beyond the mechanical properties. They have been shown to play a direct role in regulation of RhoA and ZONAB/DbpA, a y-box transcription factor. We hypothesize that Bves can modulate RhoA activation and ZONAB/DbpA activity through its regulatory effect on TJ formation. Immortalized human corneal epithelial (HCE) cells were stably transfected with Flag-tagged full length chicken Bves (w-Bves) or C-terminus truncated Bves (t-Bves). We found that stably transfected w-Bves and t-Bves were interacting with endogenous human Bves. However, interaction with t-Bves appeared to disrupt cell membrane localization of endogenous Bves and interaction with ZO-1. w-Bves cells exhibited increased TJ function reflected by increased trans-epithelial electrical resistance, while t-Bves cells lost TJ protein immunolocalization at cell-cell contacts and exhibited decreased trans-epithelial electrical resistance. In parental HCE and w-Bves cells ZONAB/DbpA and GEF-H1 were seen at cell borders in the same pattern as ZO-1. However, expression of t-Bves led to decreased membrane localization of both ZONAB/DbpA and GEF-H1. t-Bves cells had increased RhoA activity, as indicated by a significant 30% increase in FRET activity compared to parental HCE cells. ZONAB/DbpA transcriptional activity, assessed using a luciferase reporter probe, was increased in t-Bves cells. These studies demonstrate that Bves expression and localization can regulate RhoA and ZONAB/DbpA activity

    The location of the axon initial segment affects the bandwidth of spike initiation dynamics

    Get PDF
    The dynamics and the sharp onset of action potential (AP) generation have recently been the subject of intense experimental and theoretical investigations. According to the resistive coupling theory, an electrotonic interplay between the site of AP initiation in the axon and the somato-dendritic load determines the AP waveform. This phenomenon not only alters the shape of AP recorded at the soma, but also determines the dynamics of excitability across a variety of time scales. Supporting this statement, here we generalize a previous numerical study and extend it to the quantification of the input-output gain of the neuronal dynamical response. We consider three classes of multicompartmental mathematical models, ranging from ball-and-stick simplified descriptions of neuronal excitability to 3D-reconstructed biophysical models of excitatory neurons of rodent and human cortical tissue. For each model, we demonstrate that increasing the distance between the axonal site of AP initiation and the soma markedly increases the bandwidth of neuronal response properties. We finally consider the Liquid State Machine paradigm, exploring the impact of altering the site of AP initiation at the level of a neuronal population, and demonstrate that an optimal distance exists to boost the computational performance of the network in a simple classification task. Copyright

    Parameters for accurate genome alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome sequence alignments form the basis of much research. Genome alignment depends on various mundane but critical choices, such as how to mask repeats and which score parameters to use. Surprisingly, there has been no large-scale assessment of these choices using real genomic data. Moreover, rigorous procedures to control the rate of spurious alignment have not been employed.</p> <p>Results</p> <p>We have assessed 495 combinations of score parameters for alignment of animal, plant, and fungal genomes. As our gold-standard of accuracy, we used genome alignments implied by multiple alignments of proteins and of structural RNAs. We found the HOXD scoring schemes underlying alignments in the UCSC genome database to be far from optimal, and suggest better parameters. Higher values of the X-drop parameter are not always better. E-values accurately indicate the rate of spurious alignment, but only if tandem repeats are masked in a non-standard way. Finally, we show that γ-centroid (probabilistic) alignment can find highly reliable subsets of aligned bases.</p> <p>Conclusions</p> <p>These results enable more accurate genome alignment, with reliability measures for local alignments and for individual aligned bases. This study was made possible by our new software, LAST, which can align vertebrate genomes in a few hours <url>http://last.cbrc.jp/</url>.</p

    Quantitative RT-PCR profiling of the Rabbit Immune Response: Assessment of Acute Shigella flexneri Infection

    Get PDF
    Quantitative reverse transcription PCR analysis is an important tool to monitor changes in gene expression in animal models. The rabbit is a widely accepted and commonly used animal model in the study of human diseases and infections by viral, fungal, bacterial and protozoan pathogens. Only a limited number of rabbit genes have, however, been analyzed by this method as the rabbit genome sequence remains unfinished. Recently, increasing coverage of the genome has permitted the prediction of a growing number of genes that are relevant in the context of the immune response. We hereby report the design of twenty-four quantitative PCR primer pairs covering common cytokines, chemoattractants, antimicrobials and enzymes for a rapid, sensitive and quantitative analysis of the rabbit immune response. Importantly, all primer pairs were designed to be used under identical experimental conditions, thereby enabling the simultaneous analysis of all genes in a high-throughput format. This tool was used to analyze the rabbit innate immune response to infection with the human gastrointestinal pathogen Shigella flexneri. Beyond the known inflammatory mediators, we identified IL-22, IL-17A and IL-17F as highly upregulated cytokines and as first responders to infection during the innate phase of the host immune response. This set of qPCR primers also provides a convenient tool for monitoring the rabbit immune response during infection with other pathogens and other inflammatory conditions
    corecore