123 research outputs found

    Identification of hot-spot residues in protein-protein interactions by computational docking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of protein-protein interactions is becoming increasingly important for biotechnological and therapeutic reasons. We can define two major areas therein: the structural prediction of protein-protein binding mode, and the identification of the relevant residues for the interaction (so called 'hot-spots'). These hot-spot residues have high interest since they are considered one of the possible ways of disrupting a protein-protein interaction. Unfortunately, large-scale experimental measurement of residue contribution to the binding energy, based on alanine-scanning experiments, is costly and thus data is fairly limited. Recent computational approaches for hot-spot prediction have been reported, but they usually require the structure of the complex.</p> <p>Results</p> <p>We have applied here normalized interface propensity (<it>NIP</it>) values derived from rigid-body docking with electrostatics and desolvation scoring for the prediction of interaction hot-spots. This parameter identifies hot-spot residues on interacting proteins with predictive rates that are comparable to other existing methods (up to 80% positive predictive value), and the advantage of not requiring any prior structural knowledge of the complex.</p> <p>Conclusion</p> <p>The <it>NIP </it>values derived from rigid-body docking can reliably identify a number of hot-spot residues whose contribution to the interaction arises from electrostatics and desolvation effects. Our method can propose residues to guide experiments in complexes of biological or therapeutic interest, even in cases with no available 3D structure of the complex.</p

    The prevention of contrast induced nephropathy by sarpogrelate in patients with chronic kidney disease: a study protocol for a prospective randomized controlled clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Contrast-induced nephropathy (CIN) is a serious clinical problem associated with increased morbidity and mortality, particularly in patients with chronic renal insufficiency. Although some agents including hydration with saline are being prescribed to prevent renal deterioration in these high risk patients, their efficacy is not clearly defined and debatable. Therefore additional prophylactic pretreatments are needed.</p> <p>Methods/Design</p> <p>The present study aims to investigate differences in occurrence of CIN after sarpogrelate premedication in patients with chronic kidney disease (CKD). 268 participants, aged 20-85 years with a clinical diagnosis of CKD will be recruited. They will be randomly allocated to one of two conditions: (i) routine treatment without sarpogrelate, and (ii) routine treatment with sarpogrelate (a fixed-flexible dose of 300 mg/day). The primary outcome is the occurrence of CIN during 4 weeks after receiving contrast agent.</p> <p>Discussion</p> <p>As of May 2010, there were no registered trials evaluating the therapeutic potentials of sarpogrelate in preventing for CIN. If sarpogrelate decreases the worsening of renal function and occurrence of CIN, it will provide a safe, easy and inexpensive treatment option.</p> <p>Trial registration</p> <p>NCT01165567</p

    The Gaia-ESO Survey: Churning through the Milky Way

    Get PDF
    We attempt to determine the relative fraction of stars that have undergone significant radial migration by studying the orbital properties of metal-rich ([Fe/H]>0.1>0.1) stars within 2 kpc of the Sun using a sample of more than 3,000 stars selected from iDR4 of the Gaia-ESO Survey. We investigate the kinematic properties, such as velocity dispersion and orbital parameters, of stellar populations near the sun as a function of [Mg/Fe] and [Fe/H], which could show evidence of a major merger in the past history of the Milky Way. This was done using the stellar parameters from the Gaia-ESO Survey along with proper motions from PPMXL to determine distances, kinematics, and orbital properties for these stars to analyze the chemodynamic properties of stellar populations near the Sun. Analyzing the kinematics of the most metal-rich stars ([Fe/H]>0.1>0.1), we find that more than half have small eccentricities (e<0.2e<0.2) or are on nearly circular orbits. Slightly more than 20\% of the metal-rich stars have perigalacticons Rp>7R_p>7 kpc. We find that the highest [Mg/Fe], metal-poor populations have lower vertical and radial velocity dispersions compared to lower [Mg/Fe] populations of similar metallicity by 10\sim10 km s1^{-1}. The median eccentricity increases linearly with [Mg/Fe] across all metallicities, while the perigalacticon decreases with increasing [Mg/Fe] for all metallicities. Finally, the most [Mg/Fe]-rich stars are found to have significant asymmetric drift and rotate more than 40 km s1^{-1} slower than stars with lower [Mg/Fe] ratios. While our results cannot constrain how far stars have migrated, we propose that migration processes are likely to have played an important role in the evolution of the Milky Way, with metal-rich stars migrating from the inner disk toward to solar neighborhood and past mergers potentially driving enhanced migration of older stellar populations in the disk

    Emergent Properties of Patch Shapes Affect Edge Permeability to Animals

    Get PDF
    Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1) find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2) generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight). When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance

    Prediction of binding hot spot residues by using structural and evolutionary parameters

    Get PDF
    In this work, we present a method for predicting hot spot residues by using a set of structural and evolutionary parameters. Unlike previous studies, we use a set of parameters which do not depend on the structure of the protein in complex, so that the predictor can also be used when the interface region is unknown. Despite the fact that no information concerning proteins in complex is used for prediction, the application of the method to a compiled dataset described in the literature achieved a performance of 60.4%, as measured by F-Measure, corresponding to a recall of 78.1% and a precision of 49.5%. This result is higher than those reported by previous studies using the same data set

    Ranging characteristics of the domestic cat (Felis catus) in an urban environment

    Get PDF
    In many countries, high densities of domestic cats (Felis catus) are found in urban habitats where they have the potential to exert considerable predation pressure on their prey. However, little is known of the ranging behaviour of cats in the UK. Twenty cats in suburban Reading, UK, were fitted with GPS trackers to quantify movement patterns. Cats were monitored during the summer and winter for an average of 6.8 24 h periods per season. Mean daily area ranged (95 % MCP) was 1.94 ha. Including all fixes, mean maximum area ranged was 6.88 ha. These are broadly comparable to those observed in urban areas in other countries. Daily area ranged was not affected by the cat’s sex or the season, but was significantly larger at night than during the day. There was no relationship between area ranged and habitat availability. Taking available habitat into account, cat ranging area contained significantly more garden and other green space than urban habitats. If cats were shown to be negatively affecting prey populations, one mitigation option for consideration in housing developments proposed near important wildlife sites would be to incorporate a ‘buffer zone’ in which cat ownership was not permitted. Absolute maximum daily area ranged by a cat in this study was 33.78 ha. This would correspond to an exclusory limit of approximately 300–400 m to minimise the negative effects of cat predation, but this may need to be larger if cat ranging behaviour is negatively affected by population densit

    Crystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ

    Get PDF
    The recently characterised 299-residue human XLF/Cernunnos protein plays a crucial role in DNA repair by non-homologous end joining (NHEJ) and interacts with the XRCC4–DNA Ligase IV complex. Here, we report the crystal structure of the XLF (1–233) homodimer at 2.3 Å resolution, confirming the predicted structural similarity to XRCC4. The XLF coiled-coil, however, is shorter than that of XRCC4 and undergoes an unexpected reverse in direction giving rise to a short distorted four helical bundle and a C-terminal helical structure wedged between the coiled-coil and head domain. The existence of a dimer as the major species is confirmed by size-exclusion chromatography, analytical ultracentrifugation, small-angle X-ray scattering and other biophysical methods. We show that the XLF structure is not easily compatible with a proposed XRCC4:XLF heterodimer. However, we demonstrate interactions between dimers of XLF and XRCC4 by surface plasmon resonance and analyse these in terms of surface properties, amino-acid conservation and mutations in immunodeficient patients. Our data are most consistent with head-to-head interactions in a 2:2:1 XRCC4:XLF:Ligase IV complex

    Towards Universal Structure-Based Prediction of Class II MHC Epitopes for Diverse Allotypes

    Get PDF
    The binding of peptide fragments of antigens to class II MHC proteins is a crucial step in initiating a helper T cell immune response. The discovery of these peptide epitopes is important for understanding the normal immune response and its misregulation in autoimmunity and allergies and also for vaccine design. In spite of their biomedical importance, the high diversity of class II MHC proteins combined with the large number of possible peptide sequences make comprehensive experimental determination of epitopes for all MHC allotypes infeasible. Computational methods can address this need by predicting epitopes for a particular MHC allotype. We present a structure-based method for predicting class II epitopes that combines molecular mechanics docking of a fully flexible peptide into the MHC binding cleft followed by binding affinity prediction using a machine learning classifier trained on interaction energy components calculated from the docking solution. Although the primary advantage of structure-based prediction methods over the commonly employed sequence-based methods is their applicability to essentially any MHC allotype, this has not yet been convincingly demonstrated. In order to test the transferability of the prediction method to different MHC proteins, we trained the scoring method on binding data for DRB1*0101 and used it to make predictions for multiple MHC allotypes with distinct peptide binding specificities including representatives from the other human class II MHC loci, HLA-DP and HLA-DQ, as well as for two murine allotypes. The results showed that the prediction method was able to achieve significant discrimination between epitope and non-epitope peptides for all MHC allotypes examined, based on AUC values in the range 0.632–0.821. We also discuss how accounting for peptide binding in multiple registers to class II MHC largely explains the systematically worse performance of prediction methods for class II MHC compared with those for class I MHC based on quantitative prediction performance estimates for peptide binding to class II MHC in a fixed register

    Mice lacking endoglin in macrophages show an impaired immune response

    Get PDF
    24 p.-9 fig.-1 tab. Ojeda Fernández, Luisa et al.Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-OslerWeber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Engfl/flLysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Engfl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients.This work was funded by: Ministerio de Economía y Competitividad of Spain (SAF2011-23475 to LMB; SAF2013-43421-R and SAF2010- 19222 to CB.Peer reviewe

    Step by step: reconstruction of terrestrial animal movement paths by dead-reckoning

    Get PDF
    Background: Research on wild animal ecology is increasingly employing GPS telemetry in order to determine animal movement. However, GPS systems record position intermittently, providing no information on latent position or track tortuosity. High frequency GPS have high power requirements, which necessitates large batteries (often effectively precluding their use on small animals) or reduced deployment duration. Dead-reckoning is an alternative approach which has the potential to ‘fill in the gaps’ between less resolute forms of telemetry without incurring the power costs. However, although this method has been used in aquatic environments, no explicit demonstration of terrestrial dead-reckoning has been presented.Results: We perform a simple validation experiment to assess the rate of error accumulation in terrestrial dead-reckoning. In addition, examples of successful implementation of dead-reckoning are given using data from the domestic dog Canus lupus, horse Equus ferus, cow Bos taurus and wild badger Meles meles.Conclusions: This study documents how terrestrial dead-reckoning can be undertaken, describing derivation of heading from tri-axial accelerometer and tri-axial magnetometer data, correction for hard and soft iron distortions on the magnetometer output, and presenting a novel correction procedure to marry dead-reckoned paths to ground-truthed positions. This study is the first explicit demonstration of terrestrial dead-reckoning, which provides a workable method of deriving the paths of animals on a step-by-step scale. The wider implications of this method for the understanding of animal movement ecology are discussed
    corecore