405 research outputs found

    Severe hepatic encephalopathy in a patient with liver cirrhosis after administration of angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker combination therapy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>A combination therapy of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers has been used to control proteinuria, following initial demonstration of its efficacy. However, recently concerns about the safety of this therapy have emerged, prompting several authors to urge for caution in its use. In the following case report, we describe the occurrence of a serious and unexpected adverse drug reaction after administration of a combination of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers to a patient with nephrotic syndrome and liver cirrhosis with severe portal hypertension.</p> <p>Case presentation</p> <p>We administered this combination therapy to a 40-year-old Caucasian man with liver cirrhosis in our Hepatology Clinic, given the concomitant presence of glomerulopathy associated with severe proteinuria. While the administration of one single drug appeared to be well-tolerated, our patient developed severe acute encephalopathy after the addition of the second one. Discontinuation of the therapy led to the disappearance of the side-effect. A tentative rechallenge with the same drug combination led to a second episode of acute severe encephalopathy.</p> <p>Conclusion</p> <p>We speculate that this adverse reaction may be directly related to the effect of angiotensin II on the excretion of blood ammonia. Therefore, we suggest that patients with liver cirrhosis and portal hypertension are at risk of developing clinically relevant encephalopathy when angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker combination therapy is administered, thus indicating the need for a careful clinical follow-up. In addition, the incidence of this serious side-effect should be rigorously evaluated in all patients with liver cirrhosis administered with this common treatment combination.</p

    Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Get PDF
    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure

    Role of Common Genetic Variants for Drug-Resistance to Specific Anti-Seizure Medications

    Get PDF
    OBJECTIVE: Resistance to anti-seizure medications (ASMs) presents a significant hurdle in the treatment of people with epilepsy. Genetic markers for resistance to individual ASMs could support clinicians to make better-informed choices for their patients. In this study, we aimed to elucidate whether the response to individual ASMs was associated with common genetic variation. METHODS: A cohort of 3,649 individuals of European descent with epilepsy was deeply phenotyped and underwent single nucleotide polymorphism (SNP)-genotyping. We conducted genome-wide association analyses (GWASs) on responders to specific ASMs or groups of functionally related ASMs, using non-responders as controls. We performed a polygenic risk score (PRS) analyses based on risk variants for epilepsy and neuropsychiatric disorders and ASM resistance itself to delineate the polygenic burden of ASM-specific drug resistance. RESULTS: We identified several potential regions of interest but did not detect genome-wide significant loci for ASM-specific response. We did not find polygenic risk for epilepsy, neuropsychiatric disorders, and drug-resistance associated with drug response to specific ASMs or mechanistically related groups of ASMs. SIGNIFICANCE: This study could not ascertain the predictive value of common genetic variants for ASM responder status. The identified suggestive loci will need replication in future studies of a larger scal

    Assessing the role of rare genetic variants in drug-resistant, non-lesional focal epilepsy.

    Get PDF
    OBJECTIVE: Resistance to antiseizure medications (ASMs) is one of the major concerns in the treatment of epilepsy. Despite the increasing number of ASMs available, the proportion of individuals with drug-resistant epilepsy remains unchanged. In this study, we aimed to investigate the role of rare genetic variants in ASM resistance. METHODS: We performed exome sequencing of 1,128 individuals with non-familial non-acquired focal epilepsy (NAFE) (762 non-responders, 366 responders) and were provided with 1,734 healthy controls. We undertook replication in a cohort of 350 individuals with NAFE (165 non-responders, 185 responders). We performed gene-based and gene-set-based kernel association tests to investigate potential enrichment of rare variants in relation to drug response status and to risk for NAFE. RESULTS: We found no gene or gene set that reached genome-wide significance. Yet, we identified several prospective candidate genes - among them DEPDC5, which showed a potential association with resistance to ASMs. We found some evidence for an enrichment of truncating variants in dominant familial NAFE genes in our cohort of non-familial NAFE and in association with drug-resistant NAFE. INTERPRETATION: Our study identifies potential candidate genes for ASM resistance. Our results corroborate the role of rare variants for non-familial NAFE and imply their involvement in drug-resistant epilepsy. Future large-scale genetic research studies are needed to substantiate these findings

    A genome-wide association study of sodium levels and drug metabolism in an epilepsy cohort treated with carbamazepine and oxcarbazepine

    Get PDF
    Epilepsia Open published by Wiley Periodicals Inc. on behalf of International League Against Epilepsy. Objective: To ascertain the clinical and genetic factors contributing to carbamazepine- and oxcarbazepine-induced hyponatremia (COIH), and to carbamazepine (CBZ) metabolism, in a retrospectively collected, cross-sectional cohort of people with epilepsy. Methods: We collected data on serum sodium levels and antiepileptic drug levels in people with epilepsy attending a tertiary epilepsy center while on treatment with CBZ or OXC. We defined hyponatremia as Na+ ≤134 mEq/L. We estimated the CBZ metabolic ratio defined as the log transformation of the ratio of metabolite CBZ-diol to unchanged drug precursor substrate as measured in serum. Results: Clinical and genetic data relating to carbamazepine and oxcarbazepine trials were collected in 1141 patients. We did not observe any genome-wide significant associations with sodium level in a linear trend or hyponatremia as a dichotomous trait. Age, sex, number of comedications, phenytoin use, phenobarbital use, and sodium valproate use were significant predictors of CBZ metabolic ratio. No genome-wide significant associations with CBZ metabolic ratio were found. Significance: Although we did not detect a genetic predictor of hyponatremia or CBZ metabolism in our cohort, our findings suggest that the determinants of CBZ metabolism are multifactorial

    Testing association of rare genetic variants with resistance to three common antiseizure medications

    Get PDF
    OBJECTIVE: Drug resistance is a major concern in the treatment of individuals with epilepsy. No genetic markers for resistance to individual antiseizure medication (ASM) have yet been identified. We aimed to identify the role of rare genetic variants in drug resistance for three common ASMs: levetiracetam (LEV), lamotrigine (LTG), and valproic acid (VPA). METHODS: A cohort of 1622 individuals of European descent with epilepsy was deeply phenotyped and underwent whole exome sequencing (WES), comprising 575 taking LEV, 826 LTG, and 782 VPA. We performed gene- and gene set-based collapsing analyses comparing responders and nonresponders to the three drugs to determine the burden of different categories of rare genetic variants. RESULTS: We observed a marginally significant enrichment of rare missense, truncating, and splice region variants in individuals who were resistant to VPA compared to VPA responders for genes involved in VPA pharmacokinetics. We also found a borderline significant enrichment of truncating and splice region variants in the synaptic vesicle glycoprotein (SV2) gene family in nonresponders compared to responders to LEV. We did not see any significant enrichment using a gene-based approach. SIGNIFICANCE: In our pharmacogenetic study, we identified a slightly increased burden of damaging variants in gene groups related to drug kinetics or targeting in individuals presenting with drug resistance to VPA or LEV. Such variants could thus determine a genetic contribution to drug resistance

    Type I error rates of multi-arm multi-stage clinical trials: strong control and impact of intermediate outcomes

    Get PDF
    BACKGROUND: The multi-arm multi-stage (MAMS) design described by Royston et al. [Stat Med. 2003;22(14):2239-56 and Trials. 2011;12:81] can accelerate treatment evaluation by comparing multiple treatments with a control in a single trial and stopping recruitment to arms not showing sufficient promise during the course of the study. To increase efficiency further, interim assessments can be based on an intermediate outcome (I) that is observed earlier than the definitive outcome (D) of the study. Two measures of type I error rate are often of interest in a MAMS trial. Pairwise type I error rate (PWER) is the probability of recommending an ineffective treatment at the end of the study regardless of other experimental arms in the trial. Familywise type I error rate (FWER) is the probability of recommending at least one ineffective treatment and is often of greater interest in a study with more than one experimental arm. METHODS: We demonstrate how to calculate the PWER and FWER when the I and D outcomes in a MAMS design differ. We explore how each measure varies with respect to the underlying treatment effect on I and show how to control the type I error rate under any scenario. We conclude by applying the methods to estimate the maximum type I error rate of an ongoing MAMS study and show how the design might have looked had it controlled the FWER under any scenario. RESULTS: The PWER and FWER converge to their maximum values as the effectiveness of the experimental arms on I increases. We show that both measures can be controlled under any scenario by setting the pairwise significance level in the final stage of the study to the target level. In an example, controlling the FWER is shown to increase considerably the size of the trial although it remains substantially more efficient than evaluating each new treatment in separate trials. CONCLUSIONS: The proposed methods allow the PWER and FWER to be controlled in various MAMS designs, potentially increasing the uptake of the MAMS design in practice. The methods are also applicable in cases where the I and D outcomes are identical

    Nonadhesive Culture System as a Model of Rapid Sphere Formation with Cancer Stem Cell Properties

    Get PDF
    BACKGROUND: Cancer stem cells (CSCs) play an important role in tumor initiation, progression, and metastasis and are responsible for high therapeutic failure rates. Identification and characterization of CSC are crucial for facilitating the monitoring, therapy, or prevention of cancer. Great efforts have been paid to develop a more effective methodology. Nevertheless, the ideal model for CSC research is still evolving. In this study, we created a nonadhesive culture system to enrich CSCs from human oral squamous cell carcinoma cell lines with sphere formation and to characterize their CSC properties further. METHODS: A nonadhesive culture system was designed to generate spheres from the SAS and OECM-1 cell lines. A subsequent investigation of their CSC properties, including stemness, self-renewal, and chemo- and radioresistance in vitro, as well as tumor initiation capacity in vivo, was also performed. RESULTS: Spheres were formed cost-effectively and time-efficiently within 5 to 7 days. Moreover, we proved that these spheres expressed putative stem cell markers and exhibited chemoradiotherapeutic resistance, in addition to tumor-initiating and self-renewal capabilities. CONCLUSIONS: Using this nonadhesive culture system, we successfully established a rapid and cost-effective model that exhibits the characteristics of CSCs and can be used in cancer research

    Does the Precision of a Biological Clock Depend upon Its Period? Effects of the Duper and tau Mutations in Syrian Hamsters

    Get PDF
    Mutations which alter the feedback loops that generate circadian rhythms may provide insight into their insensitivity to perturbation robustness) and their consistency of period (precision). I examined relationships between endogenous period, activity and rest (τDD, α and ρ) in Syrian hamsters using two different mutations, duper and tau, both of which speed up the circadian clock. I generated 8 strains of hamsters that are homozygous or heterozygous for the tau, duper, and wild type alleles in all combinations. The endogenous period of activity onsets among these strains ranged from 17.94+0.04 to 24.13±0.04 h. Contrary to predictions, the variability of period was unrelated to its absolute value: all strains showed similar variability of τDD when activity onsets and acrophase were used as phase markers. The τDD of activity offsets was more variable than onsets but also differed little between genotypes. Cycle variation and precision were not correlated with τDD within any strain, and only weakly correlated when all strains are considered together. Only in animals homozygous for both mutations (super duper hamsters) were cycle variation and precision reduced. Rhythm amplitude differed between strains and was positively correlated with τDD and precision. All genotypes showed negative correlations between α and ρ. This confirms the expectation that deviations in the duration of subjective day and night should offset one another in order to conserve circadian period, even though homeostatic maintenance of energy reserves predicts that longer intervals of activity or rest would be followed by longer durations of rest or activity. Females consistently showed greater variability of the period of activity onset and acrophase, and of α, but variability of the period of offset differed between sexes only in super duper hamsters. Despite the differences between genotypes in τDD, ρ was consistently more strongly correlated with the preceding than the succeeding α
    corecore