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Abstract

Background: The multi-arm multi-stage (MAMS) design described by Royston et al. [Stat Med. 2003;22(14):2239–56
and Trials. 2011;12:81] can accelerate treatment evaluation by comparing multiple treatments with a control in a single
trial and stopping recruitment to arms not showing sufficient promise during the course of the study. To increase
efficiency further, interim assessments can be based on an intermediate outcome (I) that is observed earlier than the
definitive outcome (D) of the study. Two measures of type I error rate are often of interest in a MAMS trial. Pairwise
type I error rate (PWER) is the probability of recommending an ineffective treatment at the end of the study regardless
of other experimental arms in the trial. Familywise type I error rate (FWER) is the probability of recommending at least
one ineffective treatment and is often of greater interest in a study with more than one experimental arm.

Methods: We demonstrate how to calculate the PWER and FWER when the I and D outcomes in a MAMS design
differ. We explore how each measure varies with respect to the underlying treatment effect on I and show how to
control the type I error rate under any scenario. We conclude by applying the methods to estimate the maximum
type I error rate of an ongoing MAMS study and show how the design might have looked had it controlled the FWER
under any scenario.

Results: The PWER and FWER converge to their maximum values as the effectiveness of the experimental arms on I
increases. We show that both measures can be controlled under any scenario by setting the pairwise significance
level in the final stage of the study to the target level. In an example, controlling the FWER is shown to increase
considerably the size of the trial although it remains substantially more efficient than evaluating each new treatment
in separate trials.

Conclusions: The proposed methods allow the PWER and FWER to be controlled in various MAMS designs,
potentially increasing the uptake of the MAMS design in practice. The methods are also applicable in cases where the
I and D outcomes are identical.
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Background
The multi-arm multi-stage (MAMS) clinical trial design
described by Royston et al. [1, 2] for time-to-event out-
comes and by Bratton et al. [3] for binary outcomes is
a relatively simple and effective framework for acceler-
ating the evaluation of new treatments. The design has
already been successfully implemented in cancer [4] and is
starting to be used in other areas such as tuberculosis [5].
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In this particular family of MAMS designs, multiple
experimental arms are compared to a common control at
a series of interim analyses on an appropriate intermediate
outcome (I) that is on the causal pathway to the definitive
primary outcome of the study (D). In cancer, a common
choice of D is overall survival with failure-free survival (a
composite of progression-free and overall survival) used
for I [6]. Alternatively, if a suitable I outcome is unavail-
able then D itself or, in some cases, D observed at an
earlier time point could be used [7]. At each interim anal-
ysis, recruitment is stopped to experimental arms that fail
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to show a predetermined minimum level of benefit over
the control on I. Recruitment continues to the next stage
of the study to all remaining experimental arms and the
control. Experimental arms that pass all interim analyses
continue to the final stage of the study at the end of which
they are compared to the control on D.
Two useful measures of type I error rate in aMAMS trial

are the pairwise (PWER) and familywise (FWER) type I
error rates. The PWER is the probability of incorrectly
rejecting the null hypothesis for D for a particular exper-
imental arm at the end of the study regardless of other
experimental arms in the study. In contrast, the FWER is
the probability of incorrectly rejecting the null hypothe-
sis for D for at least one experimental arm in a multi-arm
study and gives the type I error rate for the trial as a whole.
Royston et al. [2] provide a calculation for the PWER;
however, it is made under the assumption that the null
hypotheses for I and D for a particular experimental arm
are true. In practice, a treatment that is ineffective on D
may have an effect on I different from that under the null
hypothesis and we show how this affects the PWER. In
particular, the PWER can often be higher than the value
calculated by the method of Royston et al. [2] and so we
show how to determine and control its maximum value.
In a MAMS trial with more than one experimental arm,

controlling the FWER rather than the PWER might be
more appropriate particularly if the trial is confirmatory
[8]. A calculation of the FWER using a simulation of
trial-level data has previously been described in [9] and
we use this to show how the FWER can vary for differ-
ent underlying treatment effects on I. We determine the
scenario under which the FWER is maximised and thus
describe how it may be controlled in the strong sense, that
is, for any set of underlying treatment effects on I and
D. In an example, we use the methodology to estimate
the maximum PWER and FWER of the original design
of the STAMPEDE (Systemic Therapy in Advancing or
Metastatic Prostate Cancer: Evaluation of Drug Efficacy)
trial in prostate cancer [6] and show how the trial design
may have looked had the FWER been controlled in the
strong sense at some conventional level.

Methods
The MAMS design
Suppose K experimental arms are to be compared to a
common control over a maximum of J stages. In the first
J − 1 stages, experimental arms are compared to the con-
trol on an intermediate outcome, I, the requirements of
which have been described previously [2]. Experimental
arms that pass all J − 1 interim analyses are then com-
pared to the control on D at the end of stage J. It is also
possible for the I and D outcomes to be the same. For
example, a phase II trial is unlikely to consider the effi-
cacy of a treatment on a long-term endpoint that would

normally form the D outcome in a phase III study (e.g.
overall survival) but instead focus only on a single short-
term endpoint throughout the study, which could be an
indicator for long-term efficacy (e.g. failure-free survival).
Denote by θjk the underlying effect of experimental arm

k relative to control on the outcome in stage j (j = 1, . . . , J ;
k = 1, . . . ,K). Without loss of generality, assume that a
negative value of θjk indicates a beneficial effect for arm
k. Note that a MAMS design currently requires the same
null and alternative hypotheses to be used for all arms in
the trial, thus allowing each arm to be assessed simulta-
neously against the control at each interim analysis [3].
Therefore, the null (H0

jk) and alternative (H1
jk) hypotheses

for θjk can be written

H0
jk : θjk ≥ θ0j ,

H1
jk : θjk < θ0j ,

j = 1, . . . , J ; k = 1, . . . ,K

for some pre-specified null effects θ0j . If I �= D then θ0J
is the assumed null value for the effect on D and will be
denoted by θ0D. Likewise, the null effect for the interim
stages (j < J) will be denoted by θ0I . If I = D then θ0j = θ0D
for all j. In practice, θ0I and θ0D are commonly taken to
be 0 to represent no difference [e.g. for log hazard ratios
(HRs)]. We will also apply similar notation to the under-
lying treatment effects for each experimental arm: when
I = D, θjk = θDk for all j, while in I �= D designs, θjk = θIk
for all j = 1, . . . , J−1 and θjk = θDk for j = J . WhenK = 1,
we will drop the subscript k.
The current procedure for designing a MAMS trial is as

follows [2]:

1. Choose the number of experimental arms, K, and
stages, J, in the trial.

2. Define the null values θ0D and, if applicable, θ0I for the
effects on the D and I outcomes, respectively, and
specify any corresponding nuisance parameters (e.g.
control event rates for binary outcomes, variances for
continuous outcomes etc.).

3. Choose the allocation ratio A, that is the number of
patients to allocate to each experimental arm for
every patient allocated to the control. A = 1
represents equal allocation while A < 1means that
fewer patients will be allocated to each experimental
arm than the control.

4. For each stage, choose the one-sided significance
level, αj, and power, ωj, for all pairwise comparisons
in that stage (j = 1 . . . , J). Rough guidelines for
choosing αj and ωj are described in [2].

5. Choose the minimum target differences θ1I and θ1D
that one would like to detect on the I and D
outcomes, respectively.

6. Calculate the required sample size (or number of
events for time-to-event outcomes), timing of each
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interim analysis and the overall type I error rate (see
below) and power. Dedicated software is available in
Stata for designing MAMS trials with time-to-event
outcomes (nstage) [9, 10] and binary outcomes
(nstagebin).

The analysis at the end of each stage occurs when
the required sample size in the control arm has com-
pleted follow-up or, for time-to-event outcomes, when the
required number of events has been observed in the con-
trol arm. At each interim analysis (end of stages 1, . . . , J −
1), recruitment is stopped to all experimental arms with
observed treatment effects on I that are statistically non-
significant at level αj, while recruitment to other arms
continues into the next stage of the study. Experimental
arms that reach the end of the final stage of the study are
compared to the control on D at level αJ and recruitment
to the trial is terminated.

Pairwise type I error rate
The PWER is the probability of wrongly rejecting the null
hypothesis for D, H0

D, for a particular experimental arm.
Since H0

D can only be rejected at the end of the final stage
of a study, a type I error may only be made at that point
(note that this MAMS design can be easily amended to
accommodate stopping rules for extreme efficacy on D,
which will have a negligible impact on the PWER [6]). Fur-
thermore, a type I error cannot be made on the I outcome
since this is not the primary outcome of the study. For a
MAMS trial with J stages, Royston et al. [2] state that the
PWER is given by

α = �J (zα1 , . . . , zαJ ;R), (1)

where �J is the J-dimensional normal distribution func-
tion with correlation matrix R. The (j, k)th entry of R is
the correlation between the treatment effects in stages j
and k under the null hypotheses of I and D. Calculation
of these correlations is described in [2] for time-to-event
outcomes, in [3] for binary outcomes and in [11] for a
single normally distributed outcome. The overall pair-
wise power is calculated in a similar manner, replacing
the stagewise significance levels (αj) in Eq. 1 with the
corresponding stagewise powers (ωj).

Influence of an underlying effect on I on the PWER
When I �= D, the calculation of α described in [2] is
made under the assumption that H0

D and the null hypoth-
esis for I, H0

I , are true. However, in practice it is possible
for an experimental arm, to have a beneficial effect on
I and yet remain ineffective on D. Rejecting H0

D at the
end of the study would still constitute a type I error, yet
the experimental arm will have a higher chance of reach-
ing that point due to its effectiveness on I (i.e. it is more
likely to pass the interim stages). Consequently, the PWER

for such an arm will be higher than the value calculated
in Eq. 1.
If the experimental arm is sufficiently effective on I that

it would always pass all interim analyses, then the first
J − 1 stages effectively become redundant. Under such a
scenario, the PWER for the experimental arm would be
maximised and will be equal to the final-stage significance
level, αJ . To illustrate this, Fig. 1 shows the PWERs of two
2-stage I �= D trial designs with time-to-event outcomes
in which the underlying log HR θI varies and θD = 0 (i.e.
the underlying HR on D is 1). The first-stage significance
levels are α1 = 0.5 in design (a) and α1 = 0.2 in design
(b). In both designs, the final-stage significance level is
α2 = 0.025, an equal allocation ratio is used (A = 1)
and θ0I = 0. Using Eq. 1 to estimate the PWER under the
assumption that the experimental arm is ineffective on I
gives α = 0.0201 for design (a) and α = 0.0165 for (b). To
calculate type I error rates for other underlying log HRs on
I, we simulated trial-level data under each design scenario
using the procedure described in [9].
As expected, when θI = 0 (i.e. when θI = θ0I ), the

PWER for both designs is equal to the corresponding
value of α (Fig. 1). As the effectiveness of the exper-
imental arm on I increases (i.e. as θI decreases), the
PWER eventually plateaus at a level equal to the final-
stage significance level (α2 = 0.025) with this value being
practically reached even for modest effects on I. The
increase in the type I error rate is greater for design (b)
and this will generally be the case when the difference
between α and αJ is larger. This occurs when using more
stages or smaller significance levels in the intermediate
stages.

Fig. 1 Effect of θI on the PWER. The PWER of two 2-stage I �= D
designs when the null effect on D is true and the underlying
treatment effect on I varies. θI is the true log HR on the I outcome and
αj is the nominal significance level in the jth stage (j = 1, 2). HR hazard
ratio, PWER pairwise type I error rates
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Controlling the PWER
Despite it being highly unlikely for a treatment arm to
have such an effect on I and D that the maximum PWER
is achieved (particularly if I is appropriately chosen), Fig. 1
shows that the inflation in the PWER above the value
calculated in Eq. 1 is large even for arms with modest
effects on I. To help guard against this possibility, one
could choose an I outcome that has high sensitivity for
D, since then if there is no effect on D it will be highly
likely for there also to be no effect on I. However, this will
not guarantee strong control of the PWER. Therefore, if
strong PWER control is required, we recommend setting
αJ equal to the desired maximum value, α∗, when design-
ing aMAMS trial to ensure that it cannot exceed this value
under any circumstance.
When the maximum type I error rate in I �= D designs

is controlled using αJ , the stopping boundaries for the
interim analyses can be considered non-binding. In other
words, recruitment to an experimental arm does not
strictly have to be stopped at the jth interim analysis if its
observed treatment effect is statistically non-significant
at level αj. This flexibility is advantageous as it may not
be desirable to drop arms that are performing no better
than the control on I if they are showing promising effects
on some other important outcomemeasures. Recruitment
to such arms can, therefore, be continued to the next
stage without inflating themaximum PWER, although the
number of patients recruited will be higher than if the
stopping guidelines were strictly followed.
When I = D, the PWER depends only on the underlying

effect on a single outcome (D) and so it can be accurately
estimated using Eq. 1. In contrast to the I �= D case, all
stagewise significance levels contribute to this maximum
value and so stopping boundaries must be binding (i.e.
strictly adhered to) to avoid inflating α. If this is likely to
be impractical due to the above reasons, then the maxi-
mum PWER can instead be controlled in a similar manner
to the I �= D case by setting αJ = α∗ to allow stopping
boundaries to be non-binding. Note, however, that this
will come at the expense of an increase in the sample size
for the final stage of the study due to the use of a smaller
significance level in that stage.

Familywise error rate
When evaluating more than one experimental arm in a
single study, the probability of at least one false-positive
result, the FWER, will be higher than the PWER [12]. In
many multi-arm settings, it may, therefore, be more desir-
able to control the type I error rate for the trial as a whole
at some conventional level rather than for each individual
treatment comparison.
In a MAMS design, the FWER can be calculated using

a generalisation of a simulation procedure proposed by
Wason and Jaki [11] for MAMS trials with a single

outcome and equally spaced interim analyses. The pro-
cedure works by simulating the joint distribution of the
z-test statistics for each arm at each stage of the study,
accounting for the between-arm and between-stage cor-
relations of the treatment effects. ForMAMS designs with
I = D, the maximum FWER occurs under the global null
hypothesis (i.e. whenH0

D is true for all experimental arms)
[13, 14]. When I �= D, the FWER is maximised when all
experimental arms are sufficiently effective on I that they
would always pass all interim analyses but are all ineffec-
tive onD, i.e. when θIk = −∞ and θDk = θ0D for all k [9]. In
this case, the interim stages effectively become redundant
and the design reduces to a one-stage trial with the PWER
equal to the final-stage significance level, αJ (i.e. the max-
imum PWER). The maximum FWER can, therefore, be
computed more quickly using the Dunnett probability:
[15]

FWER = 1 − �K (z1−αJ , . . . , z1−αJ ;C), (2)

whereC is theK×K between-arm correlationmatrix with
off-diagonal entries equal to A/(A + 1).

Influence of the underlying effects on I on the FWER
To illustrate how quickly themaximum value of the FWER
is reached as the true treatment effects on I vary, we
calculated the FWER for designs (a) and (b) described
in the previous section when two experimental arms are
compared to the control. In both two-stage designs, we
assumed θDk = θ0D (i.e. θDk = 0, k = 1, 2) while the
underlying effects on I in one or both experimental arms
varied. For both designs, the maximum FWER (calculated
in nstage using Eq. 2) is 0.045. Note that this maximum
value is the same for both designs as they have identi-
cal numbers of experimental arms (K = 2), allocation
ratios and final-stage significance levels. Assuming the
null hypothesis on I holds for both arms (i.e. the log HRs
on I are 0), then the FWER is estimated using nstage to
be 0.0372 and 0.0305 for designs (a) and (b), respectively.
In this case, the FWER is lower for design (b) as it uses a
lower significance level in the first stage.
To calculate the FWER when the underlying effects on

I in one or both experimental arms vary, we used the
simulation procedure described in [9]. The results pre-
sented in Fig. 2 show that when both experimental arms
are even modestly effective on I (e.g. HR = 0.8), the
maximum FWER is practically reached. The rate of infla-
tion in the FWER as the underlying effects on I increase
is again greater for design (b), as was the case for the
PWER. When only one experimental arm is effective on
I, the FWER is still substantially higher than under the
global null hypothesis on I, although only by about half the
amount when both arms are effective on I.
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a b

Fig. 2 Effect of θI on the FWER. The FWER of two 3-arm two-stage I �= D designs when both experimental arms are ineffective on D but the
underlying treatment effects on I vary in one or both experimental arms. θIk is the underlying log HR of arm k on I. a α1 = 0.5. b α1 = 0.2. HR hazard
ratio, FWER familywise error rate

Controlling the FWER
When I �= D, the FWER as well as the PWER can be
controlled in the strong sense using the final-stage signif-
icance level alone. To find the value of αJ corresponding
to the desired FWER, a search procedure over αJ can
be used. For example, to find the required value of αJ
that controls the maximum FWER at the one-sided 2.5%
level in designs (a) and (b), we used nstage iteratively to
calculate the maximum FWER of the designs using val-
ues of αJ between 0.0125 and 0.025 (the minimum and
maximum possible values of αJ that can correspond to
the maximum FWER) in increments of 0.0001. The final-
stage significance level that most closely corresponded to
a FWER of 0.025 without exceeding it was 0.0135. Alter-
natively, the qmvnorm function in R can also be used to
compute the required values of αJ .
When I = D, it is more difficult to find designs that

control the FWER since a search procedure over all stage-
wise significance levels is required. Since I = D designs
are also likely to be used in practice, a method for control-
ling the FWER in the I = D case is needed and is an area
of ongoing research. However, if researchers wish to have
the flexibility of non-binding stopping guidelines, then the
maximum FWER can be controlled in the samemanner as
for an I �= D design and so the methods described above
can be applied.

Results
The STAMPEDE trial in prostate cancer started as a six-
arm four-stage trial using the methodology described by
Royston et al. [1, 2]. The trial used failure-free survival as I
and overall survival as D. Recruitment began in 2005 and
was completed in 2013. The original design of the trial
is shown in Table 1. An allocation ratio of A = 0.5 was
used for this design so that one patient was allocated to

each experimental arm for every two patients allocated to
the control. Because distinct hypotheses were being tested
in each of the five experimental arms, the design focus
for STAMPEDE was on the pairwise comparisons of each
experimental arm against control, with emphasis on the
control of the pairwise type I error.
Using Eq. 1, the PWER was estimated to be 0.013. How-

ever, as explained above, the maximum PWER is actually
equal to the final-stage significance level, α4 = 0.025.
Using the calculation described in ‘Methods’, the maxi-
mum FWER of the original STAMPEDE design was 0.103.
Although the FWER was not controlled in STAMPEDE,

below we use the trial in an example to show how strong
FWER control can be achieved in a MAMS design with
I �= D. Using a search procedure over α4 in nstage,
similar to that used above for the two-stage designs, we
found that final-stage significance levels of α4 = 0.0054
and α4 = 0.0113 would have been required to control
the FWER at 2.5 % and 5 %, respectively. Stata code for
determining the final-stage significance level for a FWER
of 2.5 % is shown in the Appendix.
Consequently, this would have increased the required

number of D events on the control arm in the final stage

Table 1 Design of the six-arm four-stage STAMPEDE trial in
prostate cancer

Stage (j)
Target

Outcome
One-sided significance

Power (ωj)
Required control

HR level (αj) arm events

1 0.75 FFS 0.500 0.95 113

2 0.75 FFS 0.250 0.95 216

3 0.75 FFS 0.100 0.95 334

4 0.75 OS 0.025 0.90 403

Overall 0.013 0.83

FFS failure-free survival, HR hazard ratio, OS overall survival



Bratton et al. Trials  (2016) 17:309 Page 6 of 8

from 403 to 558 and 485, respectively (as estimated by
nstage) and may, therefore, have led to a prolonged trial
should any experimental arm reach the final stage. Thus,
investigators designing and conducting a trial should con-
sider carefully the necessity of controlling the FWER in
their trial, and whether it is achievable from a practical
point of view.

Discussion
The MAMS design is an effective and relatively simple
approach for accelerating the evaluation of multiple new
treatments. It works by simultaneously assessing experi-
mental arms against a common control in a single trial,
stopping recruitment to poorly performing arms during
the trial, and allowing interim assessments to be based on
an outcome that is observed earlier than the primary out-
come of the study. In this article, we described how the
type I error rate for each individual experimental arm and
for the trial as a whole can be determined and controlled
in I �= D designs and I = D designs with non-binding
stopping guidelines. We also investigated the impact of
the underlying treatment effect on the type I error rate
in I �= D designs and showed that it is possible for the
PWER to be higher than previously thought, with the
maximum value being equal to the final-stage significance
level of the trial, αJ . Similarly, for I �= D designs with more
than two arms, the maximum FWER does not depend on
the stagewise significance levels prior to the final stage
and can be calculated simply by treating the design as a
standard one-stage trial with the PWER equal to αJ . We
found that even for arms with modest effects on I but no
effect on D (a scenario often seen in practice), the type I
error rate can approach quite rapidly to these maximum
values. Thus, controlling the maximum PWER or FWER
should be an important design consideration in any future
MAMS trials.
An advantage of controlling the maximum PWER or

FWER of the trial by αJ is the increased flexibility of
allowing recruitment to poorly performing experimental
arms to be continued to the next stage without inflating
the type I error rate. This flexibility allows arms showing
promising effects on other important outcome measures
to be assessed further, albeit at the expense of a larger
sample size. Interim stopping guidelines can also be non-
binding in I = D designs if the maximum PWER and
FWER are controlled by αJ only. Another benefit is that
the FWER calculation is somewhat simplified and is sim-
ilar to the Dunnett procedure for a one-stage trial [15].
However, I = D MAMS designs with binding stopping
rules may also be used in practice and so a method for
controlling their PWER or FWER is required. Alterna-
tively, other approaches to designing MAMS trials with a
single normally distributed outcome have been proposed
in [11, 13]. Methods for controlling the FWER in these

designs are available (e.g. using the mams package in R)
and, unlike the MAMS designs we have considered in this
paper, stopping guidelines for efficacy such as those in
standard group sequential trials (e.g. [16, 17]) can be built
into the design. Other approaches are also available for
multi-arm trials with strong FWER control where only the
most promising treatment is to be selected at an interim
analysis based on a combination of both short- and long-
term endpoint data [18, 19]. Such designs are, therefore,
more suited to situations where the best of several treat-
ments is to be determined, as might often be the case in a
pharmaceutical setting.
There is currently much debate over whether the FWER

should be controlled in a multi-arm study. It has been
argued that FWER control is most appropriate in con-
firmatory settings [20] and has also been proposed for
exploratory studies to limit the chance of evaluating an
ineffective treatment in a potentially expensive confirma-
tory study [8]. However, Hughes [21] argues that adjusting
for multiple comparisons should not be a requirement,
since no such adjustment would have been made if each
experimental arm were evaluated in a separate two-arm
study. Freidlin et al. [22] suggest that this argument is only
reasonable if each treatment is distinct and a multi-arm
trial was used purely for efficiency reasons. If, on the other
hand, the experimental arms are closely related (e.g. if they
are different doses or schedules of the same drug), then the
FWER should be controlled. Despite this guidance,Wason
et al. [12] show that many multi-arm confirmatory trials
do not correct for multiple testing even if the treatments
are closely related. It remains unclear whether the FWER
should be controlled in confirmatory trials of several dis-
tinct treatments and further guidance from regulators is
required [12].
There has recently been much discussion over the

adding of arms to an ongoing MAMS design, such as the
STAMPEDE trial, which to date has added three new arms
since it commenced [8, 23, 24]. The effect of adding new
experimental arms is advantageous as it obviates the often
lengthy process of initiating a new trial. However, the
impact of adding arms on the FWER in the class ofMAMS
designs discussed here has not yet been fully explored.
Therefore, methods for quantifying and, in some cases,
controlling the FWER in such a trial are required. In addi-
tion, it is not initially clear how much the FWER will be
inflated when arms are added only when existing arms are
dropped for lack of benefit. A related question is whether a
sequentially rejective procedure, such as that described by
Proschan et al. [25], could be applied to theMAMS design
[26]. Such a procedure relaxes future stopping guidelines if
arms are dropped during the course of the trial, so that the
power for the remaining comparisons is increased without
inflating the FWER. For instance, if a two-stage trial ini-
tially has two experimental arms and recruitment to one
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arm is stopped at the first analysis, then the question is
whether a final-stage significance level that is higher than
that proposed in the initial design could be used.

Conclusions
In this paper, we described how to calculate the maximum
PWER and FWER of a MAMS design and have presented
methods for controlling these measures at some desir-
able level for I �= D designs and I = D designs with
non-binding stopping guidelines. The Stata software for
designing MAMS trials has been updated accordingly [9].

Appendix
Below is the Stata code used to determine the final-
stage significance level required to strongly control the
FWER of the original STAMPEDE design at the one-sided
2.5% level, as shown in ‘Results’. The code can be easily
amended for a user’s own I �= D MAMS trial. Full details
of the nstage Stata program are described in [9].

#delimit ;

local nEarms = 5;//Number of experimental

arms

local target_fwer = 0.025; // Target

familywise error rate

local aJ = ‘target_fwer’/‘nEarms’; //

Starting value for final-stage significance

level, aJ

local stop 0;

qui while !‘stop’ {;

nstage, nstage(4) alpha(0.5 0.25 0.1 ‘aJ’)

omega(0.95 0.95 0.95 0.9) hr0(1 1)

hr1(0.75 0.75) accrue(500 500 500 500)

arms(6 5 3 2) t(2 4) aratio(0.5);

local fwer = r(max_fwer);

if ‘fwer’-‘target_fwer’>0 local stop 1;

else local aJ = ‘aJ’ + 0.0001;

};

di "Require final-stage significance level

= " ‘aJ’;

di "Corresponding FWER = " ‘fwer’;
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