48 research outputs found

    Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing

    Get PDF
    The evolution of burrowing animals forms a defining event in the history of the Earth. It has been hypothesised that the expansion of seafloor burrowing during the Palaeozoic altered the biogeochemistry of the oceans and atmosphere. However, whilst potential impacts of bioturbation on the individual phosphorus, oxygen and sulphur cycles have been considered, combined effects have not been investigated, leading to major uncertainty over the timing and magnitude of the Earth system response to the evolution of bioturbation. Here we integrate the evolution of bioturbation into the COPSE model of global biogeochemical cycling, and compare quantitative model predictions to multiple geochemical proxies. Our results suggest that the advent of shallow burrowing in the early Cambrian contributed to a global low-oxygen state, which prevailed for ~100 million years. This impact of bioturbation on global biogeochemistry likely affected animal evolution through expanded ocean anoxia, high atmospheric CO2 levels and global warming

    Chitosan–Starch–Keratin composites: Improving thermo-mechanical and degradation properties through chemical modification

    Get PDF
    The lysozyme test shows an improved in the degradability rate, the weight loss of the films at 21 days is reduced from 73 % for chitosan-starch matrix up to 16 % for the composites with 5wt% of quill; but all films show a biodegradable character depending on keratin type and chemical modification. The outstanding properties related to the addition of treated keratin materials show that these natural composites are a remarkable alternative to potentiat-ing chitosan–starch films with sustainable featuresChitosan–starch polymers are reinforced with different keratin materials obtained from chicken feather. Keratin materials are treated with sodium hydroxide; the modified surfaces are rougher in comparison with untreated surfaces, observed by Scanning Electron Microscopy. The results obtained by Differential Scanning Calorimetry show an increase in the endothermic peak related to water evaporation of the films from 92 °C (matrix) up to 102–114 °C (reinforced composites). Glass transition temperature increases from 126 °C in the polymer matrix up to 170–200 °C for the composites. Additionally, the storage modulus in the composites is enhanced up to 1614 % for the composites with modified ground quill, 2522 % for composites with modified long fiber and 3206 % for the composites with modified short fiber. The lysozyme test shows an improved in the degradability rate, the weight loss of the films at 21 days is reduced from 73 % for chitosan-starch matrix up to 16 % for the composites with 5wt% of quill; but all films show a biodegradable character depending on keratin type and chemical modification. The outstanding properties related to the addition of treated keratin materials show that these natural composites are a remarkable alternative to potentiat-ing chitosan–starch films with sustainable featuresUniversidad Autónoma del Estado de México Tecnológico Nacional de México, Instituto Tecnológico de Querétaro Universidad Nacional Autónoma de México Tecnológico Nacional de México, Instituto Tecnológico de Celaya Universidad Autónoma de Cd. Juáre

    Disparity Changes in 370 Ma Devonian Fossils: The Signature of Ecological Dynamics?

    Get PDF
    Early periods in Earth's history have seen a progressive increase in complexity of the ecosystems, but also dramatic crises decimating the biosphere. Such patterns are usually considered as large-scale changes among supra-specific groups, including morphological novelties, radiation, and extinctions. Nevertheless, in the same time, each species evolved by the way of micro-evolutionary processes, extended over millions of years into the evolution of lineages. How these two evolutionary scales interacted is a challenging issue because this requires bridging a gap between scales of observation and processes. The present study aims at transferring a typical macro-evolutionary approach, namely disparity analysis, to the study of fine-scale evolutionary variations in order to decipher what processes actually drove the dynamics of diversity at a micro-evolutionary level. The Late Frasnian to Late Famennian period was selected because it is punctuated by two major macro-evolutionary crises, as well as a progressive diversification of marine ecosystem. Disparity was estimated through this period on conodonts, tooth-like fossil remains of small eel-like predators that were part of the nektonic fauna. The study was focused on the emblematic genus of the period, Palmatolepis. Strikingly, both crises affected an already impoverished Palmatolepis disparity, increasing risks of random extinction. The major disparity signal rather emerged as a cycle of increase and decrease in disparity during the inter-crises period. The diversification shortly followed the first crisis and might correspond to an opportunistic occupation of empty ecological niche. The subsequent oriented shrinking in the morphospace occupation suggests that the ecological space available to Palmatolepis decreased through time, due to a combination of factors: deteriorating climate, expansion of competitors and predators. Disparity changes of Palmatolepis thus reflect changes in the structure of the ecological space itself, which was prone to evolve during this ancient period where modern ecosystems were progressively shaped

    Efficacy of Quasi Agro Binding Fibre on the Hybrid Composite Used in Advance Application

    Get PDF
    The choice for natural fibre obtained from agricultural products is on the rise due to its solution to eco-friendly, environmental and improved mechanical properties concerns. Its abundant availability, low cost, emission reduction and adaptability to base material for composite make it a prime material for selection. This review explores diverse perspectives to the future trend of agro fibre in terms of the thermo-mechanical properties as it applies to advanced application in building structures. It is important to investigate the ecofriendliness of the products of composites from fibres in agricultural wastes so as to achieve a green and sustainable environment. This will come to fore by the combined efforts of both researchers and feedback from building stakeholders

    Mercury Spikes Indicate a Volcanic Trigger for the Late Ordovician Mass Extinction Event: An Example from a Deep Shelf of the Peri-Baltic Region.

    Get PDF
    The Late Ordovician mass extinction (LOME) was the second largest Phanerozoic crisis, but its cause remains elusive. Several triggering mechanisms have been proposed over the years, including bioevolutionary events, oceanographic changes, and geotectonic processes. Here, we report the presence of Hg spikes in the Zbrza PIG-1 borehole from the Upper Ordovician deep shelf sections of the peri-Baltic region. A strong positive anomaly in the lower late Katian (Hg/TOC = 2537.3 ppb/wt%) was noted. No correlation between Hg and TOC (R² = 0.07) was distinguished in the Hirnantian, although several positive anomalies were found. Because the Hg/Mo ratio showed trends very similar to those of Hg/TOC, it seems likely that TOC values reflect the redox conditions. In order to evaluate the role of anoxia in levels of Hg enrichment several redox indicators were measured. These showed that the elevated mercury values in the Hirnantian are not caused by anoxia/euxinia because euxinic biomarkers (maleimides and aryl isoprenoids) are present in very low abundance and pyrite framboids are absent. In total, positive Hg/TOC anomalies occur in the lower late Katian, at the Katian - Hirnantian boundary, and in the late Hirnantian. The lack of a strong Hg/TOC correlation, Ni enrichments, and the absence of 'anoxic indicators' (no biomarkers, no framboids, low Mo concentration) at these levels, supports the interpretation that Hg enrichment is due to enhanced environmental loading. We conclude that our Hg and Hg/TOC values were associated with volcanic pulses which triggered the massive environmental changes resulting in the Late Ordovician mass extinction

    Review of injury mitigation strategies and methods of assessment for passenger vehicle rollover crashes in Australia

    Full text link
    Rollover crashes are one of the most severe crash modes for passenger vehicle occupants in Australia. They produce a wide range of injury patterns due to their ballistic and chaotic nature. Thus, multiple injury mitigation strategies are required to protect occupants against the large variety of potential loading and impact scenarios. Many strategies (e.g. side curtain airbags and upper interior head protection) have been employed to reduce the occurrence of injuries in rollover crashes with varying success. Recent epidemiological research regardingserious and fatal head, spine, and thoracic injury in pure rollover crashes has identified distinct injury patterns and characteristics. Further, the relationships between these injury patterns and specific occupant, vehicle, and crash factors have also been identified. This workreviews current and proposed injury mitigation techniques specific to pure rollover crashes in light of these recent findings and attempts to identify the types of injuries that each strategy would be most effective at reducing. The injury characteristics previously identified serve as a basis from which to evaluate the estimated effectiveness that particular countermeasures and injury mitigation strategies might have for the Australian passenger vehicle fleet. The findings will provide an up-to-date review with specific focus on Australian rollover characteristics that can be used to inform future regulatory and consumer rating tests

    A case–control study of vehicle panel damage and thoracic injury in rollover crashes

    No full text
    © 2016 Informa UK Limited, trading as Taylor & Francis Group. The aim of this case–control study was to determine if there is an association between vehicle panel damage and AIS3+ thoracic injuries. NASS CDS data from 2001 to 2012 was examined for single vehicle rollover crashes with occupants receiving serious thoracic injuries (cases) and those without thoracic injuries (controls). Vehicle panel damage for cases and controls were coded and logistic regression performed to determine if there is an association between serious thoracic injury and vehicle panel damage. Furthermore, an investigation into the differences in injury sources and injury outcomes between front-seated near- and far-side occupants was performed with the data. There were two main findings from this study. First, there is an association between the rear left segment, front left upper-half door, and front right upper-half door damage and serious thoracic injury. Second, the sources of thoracic injuries and the thoracic viscera injured are different for near-side and far-side occupants
    corecore