165 research outputs found

    A comparative analysis of Patient-Reported Expanded Disability Status Scale tools.

    Get PDF
    BACKGROUND: Patient-Reported Expanded Disability Status Scale (PREDSS) tools are an attractive alternative to the Expanded Disability Status Scale (EDSS) during long term or geographically challenging studies, or in pressured clinical service environments. OBJECTIVES: Because the studies reporting these tools have used different metrics to compare the PREDSS and EDSS, we undertook an individual patient data level analysis of all available tools. METHODS: Spearman's rho and the Bland-Altman method were used to assess correlation and agreement respectively. RESULTS: A systematic search for validated PREDSS tools covering the full EDSS range identified eight such tools. Individual patient data were available for five PREDSS tools. Excellent correlation was observed between EDSS and PREDSS with all tools. A higher level of agreement was observed with increasing levels of disability. In all tools, the 95% limits of agreement were greater than the minimum EDSS difference considered to be clinically significant. However, the intra-class coefficient was greater than that reported for EDSS raters of mixed seniority. The visual functional system was identified as the most significant predictor of the PREDSS-EDSS difference. CONCLUSION: This analysis will (1) enable researchers and service providers to make an informed choice of PREDSS tool, depending on their individual requirements, and (2) facilitate improvement of current PREDSS tools.University of Southampton and National Institute of Health Research (NIHR)

    Bacterial Community Profiling of Milk Samples as a Means to Understand Culture-Negative Bovine Clinical Mastitis

    Get PDF
    Inflammation and infection of bovine mammary glands, commonly known as mastitis, imposes significant losses each year in the dairy industry worldwide. While several different bacterial species have been identified as causative agents of mastitis, many clinical mastitis cases remain culture negative, even after enrichment for bacterial growth. To understand the basis for this increasingly common phenomenon, the composition of bacterial communities from milk samples was analyzed using culture independent pyrosequencing of amplicons of 16S ribosomal RNA genes (16S rDNA). Comparisons were made of the microbial community composition of culture negative milk samples from mastitic quarters with that of non-mastitic quarters from the same animals. Genomic DNA from culture-negative clinical and healthy quarter sample pairs was isolated, and amplicon libraries were prepared using indexed primers specific to the V1–V2 region of bacterial 16S rRNA genes and sequenced using the Roche 454 GS FLX with titanium chemistry. Evaluation of the taxonomic composition of these samples revealed significant differences in the microbiota in milk from mastitic and healthy quarters. Statistical analysis identified seven bacterial genera that may be mainly responsible for the observed microbial community differences between mastitic and healthy quarters. Collectively, these results provide evidence that cases of culture negative mastitis can be associated with bacterial species that may be present below culture detection thresholds used here. The application of culture-independent bacterial community profiling represents a powerful approach to understand long-standing questions in animal health and disease

    Search for the standard model Higgs boson at LEP

    Get PDF

    The effect of tobacco, XPC, ERCC2 and ERCC5 genetic variants in bladder cancer development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this work, we have conducted a case-control study in order to assess the effect of tobacco and three genetic polymorphisms in <it>XPC, ERCC2 and ERCC5 </it>genes (rs2228001, rs13181 and rs17655) in bladder cancer development in Tunisia. We have also tried to evaluate whether these variants affect the bladder tumor stage and grade.</p> <p>Methods</p> <p>The patients group was constituted of 193 newly diagnosed cases of bladder tumors. The controls group was constituted of non-related healthy subjects. The rs2228001, rs13181 and rs17655 polymorphisms were genotyped using a polymerase chain reaction-restriction fragment length polymorphism technique.</p> <p>Results</p> <p>Our data have reported that non smoker and light smoker patients (1-19PY) are protected against bladder cancer development. Moreover, light smokers have less risk for developing advanced tumors stage. When we investigated the effect of genetic polymorphisms in bladder cancer development we have found that ERCC2 and ERCC5 variants were not implicated in the bladder cancer occurrence. However, the mutated homozygous genotype for XPC gene was associated with 2.09-fold increased risk of developing bladder cancer compared to the control carrying the wild genotype (p = 0.03, OR = 2.09, CI 95% 1.09-3.99). Finally, we have found that the XPC, ERCC2 and ERCC5 variants don't affect the tumors stage and grade.</p> <p>Conclusion</p> <p>These results suggest that the mutated homozygous genotype for XPC gene was associated with increased risk of developing bladder. However we have found no association between rs2228001, rs13181 and rs17655 polymorphisms and tumors stage and grade.</p

    Proteomic Identification of Protein Targets for 15-Deoxy-Δ12,14-Prostaglandin J2 in Neuronal Plasma Membrane

    Get PDF
    15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is one of factors contributed to the neurotoxicity of amyloid β (Aβ), a causative protein of Alzheimer's disease. Type 2 receptor for prostaglandin D2 (DP2) and peroxysome-proliferator activated receptorγ (PPARγ) are identified as the membrane receptor and the nuclear receptor for 15d-PGJ2, respectively. Previously, we reported that the cytotoxicity of 15d-PGJ2 was independent of DP2 and PPARγ, and suggested that 15d-PGJ2 induced apoptosis through the novel specific binding sites of 15d-PGJ2 different from DP2 and PPARγ. To relate the cytotoxicity of 15d-PGJ2 to amyloidoses, we performed binding assay [3H]15d-PGJ2 and specified targets for 15d-PGJ2 associated with cytotoxicity. In the various cell lines, there was a close correlation between the susceptibilities to 15d-PGJ2 and fibrillar Aβ. Specific binding sites of [3H]15d-PGJ2 were detected in rat cortical neurons and human bronchial smooth muscle cells. When the binding assay was performed in subcellular fractions of neurons, the specific binding sites of [3H]15d-PGJ2 were detected in plasma membrane, nuclear and cytosol, but not in microsome. A proteomic approach was used to identify protein targets for 15d-PGJ2 in the plasma membrane. By using biotinylated 15d-PGJ2, eleven proteins were identified as biotin-positive spots and classified into three different functional proteins: glycolytic enzymes (Enolase2, pyruvate kinase M1 (PKM1) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)), molecular chaperones (heat shock protein 8 and T-complex protein 1 subunit α), cytoskeletal proteins (Actin β, F-actin-capping protein, Tubulin β and Internexin α). GAPDH, PKM1 and Tubulin β are Aβ-interacting proteins. Thus, the present study suggested that 15d-PGJ2 plays an important role in amyloidoses not only in the central nervous system but also in the peripheral tissues

    Septin 9 isoform expression, localization and epigenetic changes during human and mouse breast cancer progression

    Get PDF
    International audienceABSTRACT: INTRODUCTION: Altered expression of Septin 9 (SEPT9), a septin coding for multiple isoform variants, has been observed in several carcinomas including colorectal, head and neck, ovarian and breast, compared to normal tissue. Mechanisms regulating its expression during tumor initiation and progression in vivo and the oncogenic function of its different isoforms remain elusive. METHODS: Using an integrative approach, we investigated SEPT9 at the genetic, epigenetic, mRNA, and protein levels in breast cancer. We analyzed a panel of breast cancer cell lines, human primary tumors and corresponding tumor-free areas, normal breast from reduction mammoplasty patients, as well as primary mammary gland adenocarcinomas derived from the Polyoma Virus Middle T antigen mouse model (PyMT). MCF7 clones expressing individual GFP-tagged SEPT9 isoforms were used to determine their respective intracellular distribution and affect on cell migration. RESULTS: An overall increase in gene amplification and altered expression of SEPT9 was observed during breast tumorigenesis. We identified an intragenic alternative promoter whose methylation regulates SEPT9_v3 expression. Transfection of specific GFP-SEPT9 isoforms in MCF7 cells indicates that these isoforms exhibit differential localization and affect migration rates. Additionally, the loss of an uncharacterized SEPT9 nucleolar localization is observed during tumorigenesis. CONCLUSIONS: In this study we found conserved in vivo changes of SEPT9 gene amplification and overexpression during human and mouse breast tumorigenesis. We show that DNA methylation is a prominent mechanism responsible for regulating differential SEPT9 isoform expression and that breast tumor samples exhibit distinctive SEPT9 intracellular localization. Together, these findings support the significance of SEPT9 as a promising tool in breast cancer detection and further emphasize the importance of analyzing and targeting SEPT9 isoform specific expression and function

    Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp

    Get PDF
    [EN] Proanthocyanidins (PAs), or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila) to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR) to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (-) catechin/g FW and 228.5 nmol (-) epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA) method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce "bloatsafe" plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass) are discussed.This work was supported by grants BIO2012-39849-C02-01 and BIO2016-75485-R from the Spanish Ministry of Economy and Competitiveness (MINECO) (http://www.idi.mineco.gob.es/portal/site/MICINN) to LAC and a fellowship of the JAE-CSIC program to SF. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Fresquet-Corrales, S.; Roque Mesa, EM.; Sarrión-Perdigones, A.; Rochina, M.; López-Gresa, MP.; Díaz-Mula, HM.; Belles Albert, JM.... (2017). Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp. PLoS ONE. 12(9). https://doi.org/10.1371/journal.pone.0184839Se018483912
    corecore