102 research outputs found

    Staphylococcus aureus enterotoxins induce IL-8 secretion by human nasal epithelial cells

    Get PDF
    BACKGROUND: Staphylococcus aureus produces a set of proteins which act both as superantigens and toxins. Although their mode of action as superantigens is well understood, little is known about their effects on airway epithelial cells. METHODS: To investigate this problem, primary nasal epithelial cells derived from normal and asthmatic subjects were stimulated with staphylococcal enterotoxin A and B (SEA and SEB) and secreted (supernatants) and cell-associated (cell lysates) IL-8, TNF-α, RANTES and eotaxin were determined by specific ELISAs. RESULTS: Non-toxic concentrations of SEA and SEB (0.01 μg/ml and 1.0 μg/ml) induced IL-8 secretion after 24 h of culture. Pre-treatment of the cells with IFN-γ (50 IU/ml) resulted in a further increase of IL-8 secretion. In cells from healthy donors pretreated with IFN-γ, SEA at 1.0 μg/ml induced release of 1009 pg/ml IL-8 (733.0–1216 pg/ml, median (range)) while in cells from asthmatic donors the same treatment induced significantly higher IL-8 secretion – 1550 pg/ml (1168.0–2000.0 pg/ml p = 0.04). Normal cells pre-treated with IFN-γ and then cultured with SEB at 1.0 μg/ml released 904.6 pg/ml IL-8 (666.5–1169.0 pg/ml). Cells from asthmatics treated in the same way produced significantly higher amounts of IL-8 – 1665.0 pg/ml (1168.0–2000.0 pg/ml, p = 0.01). Blocking antibodies to MHC class II molecules added to cultures stimulated with SEA and SEB, reduced IL-8 secretion by about 40% in IFN-γ unstimulated cultures and 75% in IFN-γ stimulated cultures. No secretion of TNF-α, RANTES and eotaxin was noted. CONCLUSION: Staphylococcal enterotoxins may have a role in the pathogenesis of asthma

    A metabolomics cell-based approach for anticipating and investigating drug-induced liver injury

    Get PDF
    In preclinical stages of drug development, anticipating potential adverse drug effects such as toxicity is an important issue for both saving resources and preventing public health risks. Current in vitro cytotoxicity tests are restricted by their predictive potential and their ability to provide mechanistic information. This study aimed to develop a metabolomic mass spectrometry-based approach for the detection and classification of drug-induced hepatotoxicity. To this end, the metabolite profiles of human derived hepatic cells (i.e., HepG2) exposed to different well-known hepatotoxic compounds acting through different mechanisms (i.e., oxidative stress, steatosis, phospholipidosis, and controls) were compared by multivariate data analysis, thus allowing us to decipher both common and mechanism-specific altered biochemical pathways. Briefly, oxidative stress damage markers were found in the three mechanisms, mainly showing altered levels of metabolites associated with glutathione and γ-glutamyl cycle. Phospholipidosis was characterized by a decreased lysophospholipids to phospholipids ratio, suggestive of phospholipid degradation inhibition. Whereas, steatosis led to impaired fatty acids β-oxidation and a subsequent increase in triacylglycerides synthesis. The characteristic metabolomic profiles were used to develop a predictive model aimed not only to discriminate between non-toxic and hepatotoxic drugs, but also to propose potential drug toxicity mechanism(s)

    Dynamics and distribution of bacterial and archaeal communities in oil-contaminated temperate coastal mudflat mesocosms

    Get PDF
    Mudflats are ecologically important habitats that are susceptible to oil pollution, but intervention is difficult in these fine-grained sediments, and so clean-up usually relies on natural attenuation. Therefore, we investigated the impact of crude oil on the bacterial, diatom and archaeal communities within the upper parts of the diatom-dominated sediment and the biofilm that detached from the surface at high tide. Biodegradation of petroleum hydrocarbons was rapid, with a 50 % decrease in concentration in the 0–2-mm section of sediment by 3 days, indicating the presence of a primed hydrocarbon-degrading community. The biggest oil-induced change was in the biofilm that detached from the sediment, with increased relative abundance of several types of diatom and of the obligately hydrocarbonoclastic Oleibacter sp., which constituted 5 % of the pyrosequences in the oiled floating biofilm on day 3 compared to 0.6 % in the non-oiled biofilm. Differences in bacterial community composition between oiled and non-oiled samples from the 0–2-mm section of sediment were only significant at days 12 to 28, and the 2–4-mm-sediment bacterial communities were not significantly affected by oil. However, specific members of the Chromatiales were detected (1 % of sequences in the 2–4-mm section) only in the oiled sediment, supporting other work that implicates them in anaerobic hydrocarbon degradation. Unlike the Bacteria, the archaeal communities were not significantly affected by oil. In fact, changes in community composition over time, perhaps caused by decreased nutrient concentration and changes in grazing pressure, overshadowed the effect of oil for both Bacteria and Archaea. Many obligate hydrocarbonoclastic and generalist oil-degrading bacteria were isolated, and there was little correspondence between the isolates and the main taxa detected by pyrosequencing of sediment-extracted DNA, except for Alcanivorax, Thalassolituus, Cycloclasticus and Roseobacter spp., which were detected by both methods

    Translocated LPS Might Cause Endotoxin Tolerance in Circulating Monocytes of Cystic Fibrosis Patients

    Get PDF
    Cystic Fibrosis (CF) is an inherited pleiotropic disease that results from abnormalities in the gene codes of a chloride channel. The lungs of CF patients are chronically infected by several pathogens but bacteraemia have rarely been reported in this pathology. Besides that, circulating monocytes in CF patients exhibit a patent Endotoxin Tolerance (ET) state since they show a significant reduction of the inflammatory response to bacterial stimulus. Despite a previous description of this phenomenon, the direct cause of ET in CF patients remains unknown. In this study we have researched the possible role of microbial/endotoxin translocation from a localized infection to the bloodstream as a potential cause of ET induction in CF patients. Plasma analysis of fourteen CF patients revealed high levels of LPS compared to healthy volunteers and patients who suffer from Chronic Obstructive Pulmonary Disease. Experiments in vitro showed that endotoxin concentrations found in plasma of CF patients were enough to induce an ET phenotype in monocytes from healthy controls. In agreement with clinical data, we failed to detect bacterial DNA in CF plasma. Our results suggest that soluble endotoxin present in bloodstream of CF patients causes endotoxin tolerance in their circulating monocytes

    The Human Serum Metabolome

    Get PDF
    Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca

    Multidisciplinary investigations of the diets of two post-medieval populations from London using stable isotopes and microdebris analysis

    Get PDF
    This paper presents the first multi-tissue study of diet in post-medieval London using both the stable light isotope analysis of carbon and nitrogen and analysis of microdebris in dental calculus. Dietary intake was explored over short and long timescales. Bulk bone collagen was analysed from humans from the Queen’s Chapel of the Savoy (QCS) (n = 66) and the St Barnabas/St Mary Abbots (SB) (n = 25). Incremental dentine analysis was performed on the second molar of individual QCS1123 to explore childhood dietary intake. Bulk hair samples (n = 4) were sampled from adults from QCS, and dental calculus was analysed from four other individuals using microscopy. In addition, bone collagen from a total of 46 animals from QCS (n = 11) and the additional site of Prescot Street (n = 35) was analysed, providing the first animal dietary baseline for post-medieval London. Overall, isotopic results suggest a largely C3-based terrestrial diet for both populations, with the exception of QCS1123 who exhibited values consistent with the consumption of C4 food sources throughout childhood and adulthood. The differences exhibited in δ15Ncoll across both populations likely reflect variations in diet due to social class and occupation, with individuals from SB likely representing wealthier individuals consuming larger quantities of animal and marine fish protein. Microdebris analysis results were limited but indicate the consumption of domestic cereals. This paper demonstrates the utility of a multidisciplinary approach to investigate diet across long and short timescales to further our understanding of variations in social status and mobility

    Supported transition metal phosphides: Activity survey for HER, ORR, OER and corrosion resistance in acid and alkaline electrolytes

    No full text
    Carbon supported MxPy (M = Ni, Co, W, Cr and Mo) were prepared via pyrolysis using a very simple and scalable method utilizing non-toxic metal and phosphorous precursors. The electrochemical hydrogen evolution (HER), oxygen reduction (ORR), and oxygen evolution (OER) reactions and corrosion resistance under both acid and alkaline conditions were examined for all these catalysts and compared to the benchmark catalysts Pt/C (HER/ORR) and IrO2(OER). The highest activities were found in alkaline solutions for Co2P for HER and ORR and Ni2P for OER. Good activity for these was also found in acid for some of these reactions, although the catalysts suffered from susceptibility to corrosion. Co2P was further studied in an alkaline environment as it shows high catalytic activity towards the oxygen reduction reaction (ORR) without significant hysteresis. The onset potential (at 0.5 mA cm-2) obtained was 0.8 V and a Tafel slope value of 38 mV dec-1 with a maximum kinetic mass activity of 2870 A gCo-1 at 0.7 V (RHE). Utilising high resolution transmission electron microscopy (HRTEM) it is possible to observe high-surface area needle-like single crystal cobalt oxide structures on the surfaces of the Co2P particles at the beginning of the ORR. Hence the high rates of initial corrosion of the Co2P identified appear to be associated with the dissolution and precipitation of Cobalt oxide on the particle surface. The as-synthesised Co2P/C also shows good performance in an 8-hour stability test for the Oxygen Evolution Reaction (OER), carried out at 1.6 V vs. RHE in alkaline conditions, with negligible drop in current density over time. Interestingly, in an acidic environment the catalyst is very active towards 2-electron- oxygen reduction leading to H2O2 with high selectivity (85%). It is intriguing that the pH dependence on this catalyst towards the ORR is similar to that seen for gold

    Pediatric "off-road vehicle" trauma: Determinants of injury severity and type

    Full text link
    OBJECTIVES: This study aimed to describe the determinants of the severity and type of injuries sustained by children hurt in off-road vehicle (ORV) accidents. METHODS: This was a retrospective clinical study for which data were obtained from the trauma database at the Children's Hospital at Westmead covering the 10-year period between January 1, 1998, and December 31, 2007. Data points collected included age, sex, Injury Severity Score (ISS), body region injured, type of vehicle, accident setting, mechanism of injury, estimated speed, position of the rider, use of a helmet and/or protective clothing, and hospital length of stay. The study end points were determinants of injury severity and type. Statistical analysis of the collected data was done with the standard statistical software package, SPSS. RESULTS: A total of 288 children (242 male [84%] and 46 female [16%] patients) presented for ORV-related trauma. Helmets significantly diminished the chance of sustaining a head injury occasioning a skull fracture. Jumping was associated with increased ISS and a higher chance of sustaining an abdominal and/or thoracic injury. Older children were more likely to sustain pelvic and spinal injures, be injured while traveling at high speed, and be injured while going over a jump. Mean ISS was significantly lower if trauma was sustained while riding a mini motorcyle in any setting and any ORV at home. CONCLUSIONS: Further research (prospective, federal, and multi-institutional) is needed with a view to optimizing training schedules, rules, regulations, and licensing requirements for pediatric ORV riders. Copyright © 2012 by Lippincott Williams & Wilkins

    Volcanic ash ice nucleation activity is variably reduced by aging in water and sulfuric acid: the effects of leaching, dissolution, and precipitation

    Get PDF
    Volcanic ash nucleates ice when immersed in supercooled water droplets, giving it the potential to influence weather and climate from local to global scales. This ice nucleation activity (INA) is likely derived from a subset of the crystalline mineral phases in the ash. The INA of other mineral-based dusts can change when exposed to various gaseous and aqueous chemical species, many of which also interact with volcanic ash in the eruption plume and atmosphere. However, the effects of aqueous chemical aging on the INA of volcanic ash have not been explored. We show that the INA of two mineralogically distinct ash samples from Fuego and Astroni volcanoes is variably reduced following immersion in water or aqueous sulfuric acid for minutes to days. Aging in water decreases the INA of both ash samples by up to two orders of magnitude, possibly due to a reduction in surface crystallinity and cation availability accompanying leaching. Aging in sulfuric acid leads to minimal loss of INA for Fuego ash, which is proposed to reflect a quasi-equilibrium between leaching that removes ice-active sites and dissolution that reveals or creates new sites on the pyroxene phases present. Conversely, exposure to sulfuric acid reduces the INA of Astroni ash by one to two orders of magnitude, potentially through selective dissolution of ice-active sites associated with surface microtextures on some K-feldspar phases. Analysis of dissolved element concentrations in the aged ash leachates shows supersaturation of certain mineral species which could have precipitated and altered the INA of the ash. These results highlight the key role that leaching, dissolution, and precipitation likely play in the aqueous aging of volcanic ash with respect to its INA. Finally, we discuss the implications for understanding the nature and reactivity of ice-active sites on volcanic ash and its role in influencing cloud properties in the atmosphere
    • …
    corecore