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Abstract 

Mudflats are ecologically important habitats that are susceptible to oil pollution, but 

intervention is difficult in these fine-grained sediments, and so clean-up usually relies on 

natural attenuation. Therefore, we investigated the impact of crude oil on the bacterial, 

diatom and archaeal communities within the upper parts of the diatom-dominated sediment 

and the biofilm that detached from the surface at high tide. Biodegradation of petroleum 

hydrocarbons was rapid, with a 50% decrease in concentration in the 0-2 mm section of 

sediment by 3 days, indicating the presence of a primed hydrocarbon-degrading community. 

The biggest oil-induced change was in the biofilm that detached from the sediment, with 

increased relative abundance of several types of diatom and of the obligately 

hydrocarbonoclastic Oleibacter sp., which constituted 5% of the pyrosequences in the oiled 

floating biofilm on day-3 compared to 0.6% in the non-oiled biofilm. Differences in bacterial 

community composition between oiled and non-oiled samples from the 0-2 mm section of 

sediment were only significant at days 12 to 28, and the 2-4 mm-sediment bacterial 

communities were not significantly affected by oil. However, specific members of the 

Chromatiales were detected (1% of sequences in the 2-4 mm section) only in the oiled 

sediment, supporting other work that implicates them in anaerobic hydrocarbon degradation. 

Unlike the Bacteria, the archaeal communities were not significantly affected by oil. In fact, 

changes in community composition over time, perhaps caused by decreased nutrient 

concentration and changes in grazing pressure, overshadowed the effect of oil for both 

Bacteria and Archaea. Many obligate hydrocarbonoclastic and generalist oil-degrading 

bacteria were isolated, and there was little correspondence between the isolates and the main 

taxa detected by pyrosequencing of sediment-extracted DNA, except for Alcanivorax, 

Thalassolituus, Cycloclasticus and Roseobacter spp., which were detected by both methods. 
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Introduction 

The sediments of coastal and estuarine wetlands are highly productive and biologically 

diverse ecosystems that are particularly prone to anthropogenic pollution, especially 

petroleum hydrocarbon contamination, through industrial run-off and spills at sea (Michel et 

al. 2013; McGenity 2014). The low wave energy in these habitats means that oil is not readily 

washed back to sea and so it can persist, especially when buried in the fine-grained anoxic 

sediments (McGenity 2014). For example, 30 years after the Florida oil spill in Buzzards 

Bay, petroleum hydrocarbons remained in the coastal marsh sediments (Reddy et al. 2002).  

More recently, the Deepwater Horizon oil spill in the Gulf of Mexico spread into salt 

marshes, and crude oil remained in the sediments two years after the spill (Michel et al. 

2013). Oil pollution disrupts marine food webs (Fleeger et al. 2003), resulting in profound 

effects on community composition and biogeochemical processes (Chronopoulou et al. 2013; 

Scott et al. 2014). The subject of this particular study is the Colne Estuary, UK, the mudflats 

and salt marshes of which are of scientific, social and commercial importance (www.colne-

estuary.org/index.html). Despite the potential for oil to persist, Coulon et al. (2012) showed 

that most quantifiable oil was degraded rapidly and primarily by aerobic bacteria in the upper 

1.5 cm of Colne-estuary mudflat sediments in tidal mesocosms. However, the shift in 

microbial community in the 1.5 cm upper sediment was modest compared with the wholesale 

change in <1 mm thick biofilm that detached from the surface sediment with the floating tide. 

Moreover, the focus was on the Bacterial (Coulon et al. 2012) and microalgae (Chronopoulou 

et al. 2013), whereas the archaeal community was not investigated. Also, their analysis 

focussed on uncultivated microbial communities, and inferences about oil-degrading activity 

could be made only from knowledge of previously cultivated obligate hydrocarbon degraders 

for which there is a strong relationship between 16S rRNA gene sequence and the ability to 
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degrade oil, hence the need to cultivate and characterise hydrocarbon degraders in this 

environment.  

The Archaea represent an important component of salt-marsh and mudflat communities. At 

the surface their abundance is generally one to two orders of magnitude lower than that of 

Bacteria (McKew et al. 2011, Li et al. 2011), but at certain depths in the sediment (e.g. the 

sulfate-methane transition zone) they can be equally abundant (Li et al. 2011).  The 

miscellaneous Crenarchaeota Group (MCG) represented the most abundant Archaea in 

estuarine sediments (Li et al. 2011), and there is evidence that they (along with MG-I 

crenarchaeaota) are heterotrophic (Seyler et al. 2014), potentially involved in degradation of 

proteins (Lloyd et al. 2013), aromatic compounds (Meng et al. 2014) and indeed a wide 

variety of compounds (Seyler et al. 2014). Other archaeal taxa with known function are also 

found in soft-grained coastal sediments, including methanogens (Munson et al. 1997), 

heterotrophic haloarchaea (Purdy et al. 2004) and ammonia-oxidising Archaea (Bernhard et 

al. 2010).  Despite the growing awareness of their ecological importance, our understanding 

of the effects of oil pollution on sediment archaeal communities remains unclear because 

only a few studies have addressed this, with different outcomes (Röling et al. 2004; Taketani 

et al. 2010; Stauffert et al. 2014).  

Given that oil mainly rests on the surface of mudflats (with some downward transport by 

bioturbation (Stauffert et al. 2013; 2014), and only the uppermost millimetres of tidal 

sediments are oxic (Miralles et al. 2007), we propose the hypothesis that bacterial as well as 

archaeal communities at the sediment surface (0-2 mm depth), which are in closer contact 

with the oil spill, will be more greatly affected than microbes at a depth of 2-4 mm, resulting 

in pronounced oil-induced changes in their community composition.  Changes in bacterial 

and archaeal community composition will be a function of: (1) utilisation of hydrocarbons as 

a source of carbon and energy (primarily or solely by Bacteria), (2) direct inhibition by oil 
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toxicity (3) indirect enhancement of the growth due to reduced grazing pressure, (4) indirect 

changes caused by factors 1 to 3.  

In this study we simulate an intertidal oil spill, characterise changes in archaeal and bacterial 

community composition, isolate and characterise microorganisms growing on different 

hydrocarbons, and measure the rate of degradation of petroleum hydrocarbons, providing an 

indication of the potential for natural attenuation in coastal mudflats. 

 

  



7 

 

Materials and Methods 

Sampling site, sampling and tidal mudflat mesocosm setup 

Both mudflat sediment and seawater were collected from the Pyefleet Channel 

(51°48'10.49"N; 0°59'25.10"E) in the Colne Estuary, UK (Figure 1a) - seawater in Jerry cans 

at high tide on 26 March, 2009, and 200 mudflat sediment cores (9.8 cm high and 6.5 cm in 

diameter) 6 days later at low tide.  

The tidal mesocosms were set up in a greenhouse at the University of Essex and consisted of 

eight 42-litre clear polypropylene boxes (length: 52 cm, width: 44 cm, depth: 31 cm), each 

containing 25 cores of mudflat sediment and 10 L of seawater. Each mesocosm also had an 

adjoining 42-litre reservoir tank containing 30 L of seawater. One ml of weathered Forties 

crude oil (a medium light North Sea crude oil, weathered by distillation at 230°C for 2 h to 

remove the volatile fraction) was added to the surface of the cores in four of the mesocosms 

(“oiled” mesocosms) while the other four replicate non-oiled mesocosms served as control 

(Figures 1b and 1c). The weathered Forties crude oil was spiked with 0.075% w/w 

1,2,3,4,5,6,7,8,9,10-decamethyl-anthracene (Sigma-Aldrich), a branched PAH that is 

recalcitrant to degradation and so serves as an internal marker. Submersible pumps (Weipro 

WH-200, 230 V) were used to propel the seawater from the reservoir tanks into the 

mesocosms and vice versa to simulate a 6-h tidal cycle (Figure 1b). The pumps were coupled 

to timers that regulated the tidal cycle; hence high tide occurred every day at 9 a.m. and 9 

p.m. while low tide occurred at 3 p.m. and 3 a.m.  

Evaporation of the seawater (36‰ at 2-h) was monitored by taking regular salinity 

measurements with a portable refractometer DIGIT-100 ATC and any salinity increase was 

rectified by the addition of sterile reverse-osmosis water.  
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Over a period of 28 days, sampling from each mesocosm (experimental quadruplicate) was 

carried out at 6 time points: 2 h after oil addition (t = 2-h), and then on days 3, 6, 12, 20 and 

28. Complete sediment cores were sampled from the mesocosms at low tide; the surface layer 

of each core was finely sliced into 2 mm sections. Samples for 16S rRNA gene-based 

community analyses were homogenised in RNAlater® (Ambion) and frozen at -80°C, those 

for petroleum hydrocarbon extraction were directly frozen at -20°C, while those for 

cultivation were stored at 4°C. The biofilms that had detached from the cores and were 

floating on the surfaces of the water at high tide were collected with the aid of sterilised 

spatulas, rinsed into universal bottles containing ONR7a seawater basal salts and frozen at -

80°C.  

 

Petroleum hydrocarbon analysis by GC-MS  

Total petroleum hydrocarbons (TPH) were solvent extracted from oil-contaminated mudflat 

sediment and were analysed and quantified as described by Coulon et al. (2007).  

TPH concentrations were  normalised with the internal marker 1,2,3,4,5,6,7,8,9,10- 

decamethyl-anthracene and relative TPH abundance in each sample calculated using the 

equation: %TPH  = (As/Ms)/(A0/M0) × 100 (Prince et al. 2003) where As and Ms are the 

concentrations of TPH and internal marker respectively in the tidal mesocosm samples, and 

A0 and M0 are the concentrations at 2-h, considered here as the initial concentration. 

 

Isolation of bacteria from hydrocarbon enrichment cultures 

Hydrocarbon enrichment cultures in liquid media were established by inoculating 200 µl of 

mud slurry (prepared by homogenising 1 g of mudflat sediment in 20 ml of ONR7a medium) 

into 125-ml serum bottles containing sterilised ONR7a medium (20 ml) (Dyksterhouse et al. 

1995) with either 0.5% v/v filter-sterilised (through a 0.2 µm PTFE syringe filter) weathered 
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Forties crude oil, pristane, tetradecane as carbon sources.  A mixture of PAHs comprising 

phenanthrene, pyrene and fluorene (0.167% w/v each final concentration) was also used, and 

prepared by dissolving them in acetone in equal proportion to a final concentration of 50 g l-1, 

filter-sterilising and then dispensing 2 ml  into serum bottles. Acetone was then allowed to 

evaporate leaving crystalline PAH deposits at the bottom of the bottles, followed by addition 

of the sediment slurry. The serum bottles were subsequently capped and crimp-sealed with 

PTFE-lined silicon septa. 

Cyclohexane-enrichment cultures were carried out in 250 ml flasks containing 100 ml of 

ONR7a medium where 0.5 ml of cyclohexane was introduced through a perforated sealed 

glass tube, allowing diffusion of cyclohexane vapours. The flasks had hollowed septum-lined 

screw caps through which the glass tube containing the hydrocarbon passed.  

All hydrocarbon enrichment cultures using solid media were prepared with washed agar onto 

which 200 µl each of the hydrocarbons and mud slurry were spread. The agar (15 g l-1) was 

washed twice by alternately stirring with 2% acetone (on a magnetic stirrer) and rinsing in 

deionised water. In contrast, the PAH mixture dissolved in acetone was poured onto the 

surfaces of ONR7a agar plates and the acetone allowed to evaporate leaving crystalline PAH 

deposits. Molten agarose (3 ml per plate; 2% w/v in sterile deionised water) was poured 

evenly over the PAH crystals, allowed to solidify before spreading the mud slurry on the 

surface. Cyclohexane-enrichment cultures were prepared by placing cyclohexane-soaked 

GF/C filter papers on the lids of the Petri dishes and incubating in a glass desiccator jar.  

All enrichment cultures were incubated at 20°C, representing the average temperature in the 

greenhouse; liquid cultures were also gently agitated on a platform rocker at 10 rpm. 

The first round of sub-culturing from both liquid and solid cultures was carried out at week-1 

and 3 to isolate bacteria involved in the different stages of hydrocarbon biodegradation. 
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Liquid cultures were sub-cultured by carrying out 10-fold serial dilutions and spreading 50 µl 

from 10-2 and 10-5 dilutions on ONR7a agar plates containing the respective hydrocarbons as 

described for the initial enrichments. 

 

Nucleic acid extraction  

DNA was extracted from the mudflat samples, floating biofilms and also from isolates. The 

full details are given in the Online Resource Material. Extracted DNA was viewed under UV 

light after electrophoresis in agarose gel (1% w/v in 1 × Tris-acetate-EDTA  buffer at 100 V) 

and staining in ethidium bromide solution (0.4 µg ml-1). 

 

T-RFLP analyses of 16S rRNA genes of bacterial and archaeal communities 

The 16S rRNA gene amplicons were generated by amplifying directly from DNA extracted 

from replicate samples of mudflat sediment and floating biofilm.  PCR amplification of 

bacterial 16S rRNA genes was performed with primer pair FAM 63F/ HEX 1389R (Marchesi 

et al. 1998) (Invitrogen). PCR cycling conditions were as described by Fahy et al. (2006). 

Archaeal 16S rRNA genes were amplified by nested PCR using forward primer 27Fa (Fish et 

al. 2002) which had been FAM-labelled (Invitrogen) and universal reverse primer 1492Ru 

(Lane 1991) which had been HEX-labelled (Invitrogen). PCR conditions were identical to 

those in Fahy et al. (2006) with the exception of the hybridisation temperature that was 

increased to 60°C based on PCR optimisation tests. PCR products were cleaned with the 

QIAquick PCR purification kit (Qiagen) and Cleaned PCR products (10 µl) were digested (10 

µl) digested with restriction enzymes for 3 h at 37°C; bacterial 16S rRNA gene amplicons 

were digested with 10 U of AluI (Fermentas) while those obtained from Archaea were 

digested with 10 U of Msp1(Fermentas). The remaining T-RFLP procedures were as 

described by Fahy et al. (2006), with slight modification. Following normalisation, fragments 

Formatted: Font: (Default) Times
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with a value representing less than 1% relative abundance were discarded. Homologous T-

RFs were aligned with T-align software (Smith et al. 2005; http://inismor.ucd.ie/~talign/), 

and T-RF sizes less than 1 bp apart were considered the same and pooled.  Replicate data 

were pooled by calculating mean values of the relative abundance of fragments in replicate 

samples; the resulting pooled data was subjected to multivariate analyses. 

 

454 Pyrosequencing analyses of 16S rRNA genes of bacterial communities 

Uncultivated microbes and specific changes in community composition of selected samples 

of mudflat sediment (0-2 mm oiled and non-oiled from 2-h, days 3 and 12; 2-4 mm oiled and 

non-oiled from day-12) and floating biofilm (day-3) were identified from 16S rRNA gene 

amplicon libraries generated from the extracted DNA using the 454 GS-FLX Titanium 

sequencing technology at the NERC Biomolecular Analysis Facility (Liverpool, UK). The 

full details are given in the Online Resource Material. 

 

Sequencing of isolates  

PCR targeting the 16S rRNA genes of the bacterial isolates was performed with primer pair 

27F and 1492R (Lane 1991) in a Gene Amp® PCR system 9700 thermocycler (Applied 

Biosystems). PCR master mix and cycling conditions were as described by Fahy et al. (2006); 

the 16S rRNA gene amplicons were purified with the QIAquick PCR purification kit 

(Qiagen) and sent to GATC Biotech (http://www.gatc-biotech.com/en/index.html) for 

sequencing using the forward primer, 27F.  

 

Phylogenetic analyses 

Partial 16S rRNA sequences of the isolates and representative sequence from each CD-HIT 

cluster were compared to the NCBI database using the Basic Local Alignment Search Tool 
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(BLAST) for sequence similarity. Alignments of sequences were obtained with the ClustalW 

application (Thompson et al. 1994) of the Bioedit program. Phylogenetic trees were produced 

with the PHYLIP 3.695 interface (Felsenstein 2009), using the Jukes and Cantor model of 

nucleotide substitution, the neighbour-joining tree-building algorithm, and bootstrap 

resampling of 1000 data sets. 

 

Statistical analysis 

Principal Component Analysis (PCA) was carried out using XLSTAT 2014 (Addinsoft™). 

PCA plots of the T-RFLP community profiles of the mudflat sediment and floating biofilm 

were generated based on Euclidean distance metric to demonstrate the dissimilarities between 

community compositions of the samples. Analysis of similarities (ANOSIM) was performed 

with PAST (Paleontological statistics) 2.17 software package (Hammer et al. 2001) using the 

Bray-Curtis similarity matrix to compare the presence/absence and relative abundance of T-

RFs in replicate samples.  Significant hydrocarbon degradation was determined by analysis of 

variance (ANOVA) coupled with Tukey’s HSD and Dunnett’s two sided tests, also 

performed with XLSTAT 2014 (Addinsoft™). 
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Results and Discussion 

Changes in hydrocarbon concentrations and other parameters in the mudflat mesocosms  

The measured alkanes ranged from C10 to C39, including branched alkanes, pristane and 

phytane, while the polycyclic aromatic hydrocarbons included C0 to C3 naphthalenes, 

acenaphthylene, acenaphthene, C0 to C2 fluorenes, C0 to C2 dibenzothiophenes, C0 to C2 

phenanthrenes, fluoranthene, pyrene and chrysene, benzo[a]anthracene, 

benzo[k]fluoranthene, benzo[b]fluoranthene, dibenzo[a,h]anthracene and 

benzo[g,h,i]perylene. C0 to C3 corresponds to the carbon number of the alkyl group in 

alkylated PAHs, implying that C0 is the native PAH with no alkyl group. The concentration 

of the internal marker 1,2,3,4,5,6,7,8,9,10-decamethyl-anthracene in 0-2 mm and 2-4 mm 

sediment sections at 2-h was 0.06 ± 0.01 µg g-1 sediment and 0.05 ± 0.03 µg g-1 sediment 

(mean ± SE), respectively.  

Oil emulsification, an indication of biodegradation, was apparent in the oiled mesocosms by 

day-3. TPH rapidly decreased by about 50% (Tukey’s HSD; p<0.05) within the first 3 days in 

the 0-2 mm sediment, after which no further significant TPH depletion occurred (Figure 2a; 

Online Resource 1).  Short- and medium-chain alkanes were depleted at a faster rate than 

long-chain alkanes. Within this period, 61% of C11-C16 n-alkanes had been depleted 

compared to the 35% depletion of C33 to C39 n-alkanes (Figure 2b). Diagnostic ratios show 

that the reduction in alkane concentration from 2-h to day-3 was as a result of biodegradation 

as there was a decrease in C17/Pristane ratio from 2.45 to 1.79 and in C18/Phytane ratio from 

2.74 to 2.66 in the 0-2 mm sediment (where the branched alkanes are less prone to 

biodegradation but equally susceptible to abiotic loss). The PAHs reduced by 62% in 3 days 

(Figure 1c; Online Resource 1). GC-MS analyses of 0-2 mm sediment at 2-h shows that the 

most depleted PAH by day-3 was the semi-volatile naphthalene. Both biodegradation and 

volatilisation are likely to have caused this rapid decrease. In addition, the diagnostic ratio 



14 

 

Σchrysene/Σphenanthrene increased from 0.02 at 2-h to 0.04 at day-3 suggesting that 

biodegradation also contributed to the loss of PAHs. 

Oil degradation was more rapid than that observed previously in similar mesocosms (Coulon 

et al. 2012), possibly because the oil used by Coulon et al. (2012) had been emulsified by 

shaking with water before addition, whereas it was not emulsified in the current study. Water-

in-oil emulsions are typically difficult to degrade by microbes because of their high viscosity 

and low surface area (see McGenity et al. 2012). In addition, the immediate and much more 

rapid depletion of nutrients in the current study (compared with that of Coulon et al. (2012)) 

suggests that there may have been a higher starting microbial biomass in the current study, 

with more hydrocarbon degraders.  

The 3-day decrease in TPH concentration coincided with a significant reduction (Tukey’s 

HSD: p<0.05) in water-column pH (Online Resource 2c), which may be due to carboxylic 

acids that are by-products of hydrocarbon biodegradation (Van Hamme et al. 2003). 

Immediate and rapid biodegradation is suggestive of a pre-adapted microbial community, and 

high temperatures may have contributed to higher bacterial activity (Coulon et al. 2007) as 

well as volatilisation. Indeed, temperature in the greenhouse ranged between 12°C and 

34.4°C and high temperatures were frequently recorded and occurred as early as day-2 of the 

experiment (Online Resource 2b).  

Because the mesocosms were closed systems with no replenishment of nutrients, nitrate and 

nitrite were exhausted in 6 days in both oiled and non-oiled water columns, but significantly 

lower values (Tukey’s HSD: p<0.05) at day-3 were recorded for the oiled mesocosms, which 

is probably due to biodegradation of hydrocarbons (Online Resource 2a). 

The oiled 2-4 mm section of sediment had approximately three-fold lower TPH values than 

the 0-2 mm section at 2-h (Figure 2a), and there was no significant change in TPH values in 
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the deeper sediment (Tukey’s HSD; p>0.05) throughout the study. The concentration of 

aromatics barely changed, possibly indicating that the PAHs were adsorbed to the sediments 

and not available for biodegradation. 

 

Changes in archaeal and bacterial community composition in the mudflat sediment and 

floating biofilms  

Circular bBiofilms that had separated from and retained the circular shape of the sediment 

cores,  were observed floating above the cores at high tide as also seen by Coulon et al. 

(2012). Floating biofilms were absent at 2-h and bacterial 16S rRNA gene amplicons could 

not be obtained from these samples on day-12. We were also unable to obtain archaeal 16S 

rRNA gene amplicons from the floating biofilms. 

 

Bacterial versus archaeal mudflat sediment communities 

As expected for natural samples, replicate T-RFLP profiles of oiled and non-oiled samples 

were quite heterogeneous (Online Resources 3 and 4), and so mean T-RFLP profiles were 

used for PCA visualisation. Figure 3a shows that time was the main parameter influencing 

bacterial community changes in the 0-2 mm mudflat sediment, and to a lesser extent, in the 2-

4 mm sediment. For example, bacterial communities in oiled and non-oiled 0-2 mm sediment 

are similar to one another from 2-h to day-6 (Figure 3a; cluster X), but significantly differ 

(ANOSIM; P<0.05) from the oiled and non-oiled communities at days 12 to 28 (Figure 3a; 

cluster Y). Numerous factors could have contributed to these bacterial community changes, in 

particular the rapid decrease in dissolved nitrogen (Online Resource 2a). Oil-induced 

differences in the 0-2 mm sediment bacterial communities occurred much later, on days 12 

and 28 (ANOSIM; P<0.05) when most of the oil had been degraded. This is contrary to other 

reports of an immediate shift in bacterial community composition after exposure to oil 
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(Bordenave et al. 2007, Païssé et al. 2010). The rapid biodegradation of oil (Figure 2a) may 

have negated any oil-induced toxicity towards other members of the community.  

Oil had much less impact on the bacterial communities in the lower 2-4 mm sediment 

(ANOSIM; P = 0.1336), where TPH concentrations were lower. There are notable differences 

between bacterial communities at the two depths (ANOSIM; P<0.05) that are more 

noticeable from day-6 onwards (Figure 2a).  

The archaeal communities in the 0-2 mm sediment layer were not significantly affected by oil 

(Figure 3b). This is similar to the observations of Taketani et al. (2010) where only a minor 

oil-induced change occurred in archaeal community structure during a 75-day tidal mangrove 

sediment mesocosm. In contrast, Stauffert et al. (2014) report an oil-induced reduction in the 

diversity of Crenarchaeota MCG in their tidal sediment microcosm study. Although Röling et 

al. (2004) were unable to amplify archaeal 16S rRNA genes from day 6 onwards in their 

laboratory microcosms of oil-contaminated beach sediments, which is indicative of a 

decrease in abundance, there was no clear effect of oil on archaeal communities during their 

field trial. The archaeal community may be collectively resistant to the toxic effects of crude 

oil, unlike some bacterial taxa (e.g. SAR-11; Chronopoulou et al. 2014). However, the rapid 

loss of hydrocarbons may also have contributed to no significant change in their composition. 

For the predominantly heterotrophic MCG archaea, which are abundant in marine sediments 

(Li et al. 2012; Stauffert et al. 2013; Meng et al. 2014) and are mostly heterotrophic (Lloyd et 

al. 2013; Seyler et al. 2014), and for methanogens that rely on the metabolites of other 

microbes, there would be no decrease in organic carbon supply from phototrophs (e.g. 

diatoms; Chronopoulou et al. 2013) as a consequence of oil addition.  Ammonia was always 

detectable in the water column (Online Resource 2d), and so presumably also in the sediment, 

where ammonia-oxidising Archaea reside, but in low abundance relative to ammonia-

oxidising bacteria in the Colne Estuary (Li et al. 2014) compared with other coastal 
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sediments (Bernhard et al. 2010). The lack of perturbation in organic carbon and ammonia 

availability are consistent with the lack of significant oil-induced change in those Archaea for 

which we know the phenotype. However, oil-induced changes in specific populations that 

were masked by the community-level analysis are a distinct possibility. We were not able to 

obtain archaeal 16S rRNA gene amplicons from the non-oiled 2-4 mm sediment at 2-h, day-

20 and day-28, but no significant oil-induced differences in archaeal communities occurred 

between day 3 and 12 (ANOSIM; P > 0.3454). 

 

Bacterial and diatom communities in floating biofilms compared with those at 0-2 mm depth  

There were significant dissimilarities (ANOSIM; P < 0.05) between all oiled and non-oiled 

floating biofilm communities, even as early as day-3 (Figure 4). At this time diatoms made 

up 63% of the oiled floating biofilm sequences in contrast to 37% of the non-oiled biofilm 

(Figure 5), and the main changes were in the relative abundance of diatom phylotypes (Table 

1). The oiled floating-biofilm communities were also distinct (ANOSIM; P < 0.05) from the 

oiled 0-2 mm sediments. There was a prevalence of diatoms and microbes belonging to the 

Gamma- and Alphaproteobacteria in the oiled floating biofilms compared to the oiled 0-2 

mm sediment on day-3 (Figure 5; see Online Resource 98a). One oil-enriched phylotype, 

related to Oleibacter, is discussed later, and supports the finding of Coulon et al. (2012) that 

aerobic hydrocarbon-degrading bacteria concentrate in tidal biofilms where they are in direct 

contact with floating oil.   

 

Temporal and spatial dynamics of bacterial phyla 

Pyrosequencing analyses were focussed on the Bacteria, because of the minimal effects of 

time, oil and depth on the archaeal communities. A total of 6675 sequences were analysed; 

sequences of less than 440 nt constituted 7% of the total. Further details of the 
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pyrosequencing libraries including the distribution of sequences per sample are in. Online 

Resource 5. A high proportion of amplicons belonged to the Bacillariophyta (diatoms) (35%), 

Deltaproteobacteria (18%) and the Gammaproteobacteria (12%) (Figure 5a). The very low 

abundance of Cyanobacteria sequences (0.6%) supports their previously reported relatively 

low densities in the Colne estuary (Thornton et al. 2002). Sequences with ≥ 95% identity 

were placed into clusters, however a diatom cluster, represented by 1639 sequences, was re-

clustered using ≥ 97% sequence identity cut-off. A total of 138 clusters with ≥ 6 sequences 

were identified representing 54% of the total number of sequences (see Figures 6 to 8; Online 

Resources 56, 6 7 and 78). 

The taxonomic classification analysis of each sample (Figure 5b) shows a dominance of 

diatoms at 2-h and day-3 in the 0-2 mm sediment and a slight enrichment of this group in the 

oiled sediments, while cyanobacterial sequences remained constantly low in all samples 

throughout the duration of the experiment. On day-12, however, there was a large change that 

corroborates the T-RFLP data shown in Figure 3a. This was largely driven by a 31% 

reduction in diatom relative abundance, resulting in the dominance of the Deltaproteobacteria 

in both oiled and non-oiled sediment.  Another example of a time-associated change was the 

general increase of Alphaproteobacteria sequences in oiled and non-oiled 0-2 mm sediments. 

In contrast to these results, earlier studies (Coulon et al. 2012; Chronopoulou et al. 2013) 

focussing on the top 1.5 cm of Colne-estuary mudflat sediments in tidal mesocosms, reported 

increased abundance of both diatoms and Ccyanobacteria over time in both oiled and non-

oiled sediments, with Cyanobacteria dominating oiled sediments on day-21. This increase 

was in part ascribed to a decrease in grazing pressure by Hediste diversicolor and Hydrobia 

sp., due to oil toxicity (Chronopoulou et al. 2013). In the current study, by day-5, we 

observed the burrowing and diatom-grazing (Lopez and Levinton 1978) gastropod, Hydrobia 

sp. On day-7, 14 ± 3 (mean ± SE) individuals of Hydrobia were recorded per oiled 



19 

 

mesocosms, whereas 54 ± 13 were recorded for the non-oiled mesocosms. On day-10, 

Hydrobia numbers had increased to 38 ± 11 (mean ± SE) per oiled mesocosm. By day-27, 44 

± 8 (mean ± SE) individuals of Hydrobia were recorded for the oiled mesocosms, while 88 ± 

18 were recorded for the non-oiled mesocosms.  However, at day-12 diatom relative 

abundance was the same in both oiled and non-oiled surface sediments (Figure 5b), despite 

the previous higher abundance of Hydrobia.  The rapid loss of oil in the current study 

probably allowed Hydrobia populations to flourish more than in the study by Chronopoulou 

et al. (2013), thereby explaining temporal decrease in diatoms, but other factors must explain 

the lack of a difference in abundance of phototrophs between oiled and non-oiled 

communities in the current study. 

Decreased diatom abundance most likely led to reduced photosynthesis (see Chronopoulou et 

al. 2013) and therefore a decrease in dissolved oxygen, which possibly contributed to the 

dominance of the Deltaproteobacteria group on day-12. Other factors such as depletion of 

fixed nitrogen, the fluctuating temperature in the mesocosms (Online Resource 2), viral lysis 

and protozoan grazing (see McGenity et al. 2012), and accumulation of metabolic waste 

products may also have contributed to the time-associated changes in microbial community 

composition.  

The variation in the mudflat communities with depth was exemplified by the largely 

anaerobic group, the Deltaproteobacteria, which had higher relative abundance in both the 

oiled and non-oiled, day-12 sediment at 2-4 mm depth compared with 0-2 mm (Online 

Resource 8b9b). Similarly, at day-12, sequences from the Firmicutes, predominantly 

members of the Clostridiales and Bacillales that are mostly anaerobes or facultative 

anaerobes, were more abundant in the oiled 2-4 mm layers (4%) than in the oiled 0-2 mm 

layers (2%).  
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Bacterial phyla impacted by oil 

The diatoms were initially enriched by oil (Figure 5b). For instance, on day-3, they 

constituted 55% of the 0-2 mm oiled sediment pyrosequences, while representing 37% of the 

corresponding non-oiled sediment.  The Chloroflexi, which consists mainly of sequences 

affiliated with Anaerolineae (85-91% sequence identity), was also slightly more abundant in 

the oiled sediment (data not shown). This was the only group absent in all non-oiled sediment 

samples; on the other hand, it constituted 0.2 % of sequences in the oiled 0-2 mm sediment at 

2-h and day-3, and 1% of the oiled 2-4 mm sediment. Increased abundance of Chloroflexi in 

oil-rich sediments has been observed in many studies (Winderl et al. 2008; Liu et al. 2009; 

An et al. 2013; Sherry et al. 2013; Sutton et al. 2013; Yang et al. 2014). In particular, 

Anaerolineae, which are obligate anaerobes (Sekiguchi et al. 2003; Yamada et al. 2006) and 

often found in subsurface sediments (Hug et al. 2013), have been associated with anaerobic 

degradation of hydrocarbons. For example, Anaerolineae was enriched in microcosms 

containing oil-contaminated estuarine sediments under anaerobic and sulfate-reducing 

conditions (Sherry et al. 2013). Also, pyrosequence libraries of bacterial 16S rRNA genes 

from diesel-contaminated soil samples show a high abundance of sequences related to 

Anaerolineae compared to uncontaminated samples (Sutton et al. 2013). Hence, it is feasible 

that they play a role in anaerobic degradation of oil in the mudflat sediment in the 

mesocosms. 

In contrast, members of the Bacteroidetes, many of which are specialist degraders of high 

molecular weight organic compounds, such as polysaccharides (Thomas et al. 2011), were 

negatively affected by oil (Figure 5b). For instance, Bacteroidetes sequences constituted 20% 

of the 2-4 mm non-oiled sediment library on day-12, while representing 8% of the 

corresponding oiled sediment. This is consistent with some studies that have reported the 
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reduction in abundance or absence of Bacteroidetes in hydrocarbon-contaminated 

environmental samples (Teira et al. 2007; Mortazavi et al. 2013).  

 

Oil-impacted phylotypes 

The most noteworthy phylotype enriched by oil was Oleibacter sp. (Cluster 1077) (Table 1; 

see Figure 6) with 97% sequence identity to Oleibacter marinus 1O18, which is an aliphatic 

hydrocarbon-degrading microbe (Teramoto et al. 2011). It also has 91-94% sequence identity 

(see Online Resource 910) to the Oleibacter phylotypes detected in the Colne estuary 

sediment by Coulon et al. (2012). Oleibacter sp. constituted 5% of the pyrosequences in the 

oiled floating biofilm on day-3 compared to 0.6% in the non-oiled floating biofilm. 

Interestingly, this microbe was the only known obligate hydrocarbonoclastic bacteria 

(OHCB) detected in high relative abundance in this study. Other OHCB, such as Alcanivorax, 

Thalassolituus and Cycloclasticus, were present in much lower relative abundance, in clusters 

with fewer than six sequences; although strains belonging to these genera were cultivated 

(see later).  Possible explanations for these findings are: (1) the low nutrient concentrations in 

the mesocosms (see Online Resource 2); it has been shown that the growth of most OHCB is 

stimulated by nutrient addition (Kasai et al. 2002a; McKew et al. 2007b; Head et al. 2006), 

while species of Oleibacter have been reported to dominate in both nutrient-supplemented 

and nutrient-unamended oil-polluted mesocosms (Teramoto et al. 2009); (2) the elevated and 

relatively constant temperatures recorded in the greenhouse may have contributed to the 

selection of Oleibacter that has been shown to play an important role in the degradation of 

aliphatic hydrocarbons in tropical seawater (Teramoto et al. 2009; Teramoto et al. 2011; 

Teramoto et al. 2013). In contrast to the current study, Coulon and colleagues (2012) did not 

detect Oleibacter in oiled floating biofilms from their tidal mesocosms, while sequences 

closely related to Alcanivorax borkumensis constituted almost 50% of the total sequences in 
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these biofilms. This may in part relate to the difference in sampling time, and in addition to 

the aforementioned differences in experimental conditions, there is likely to be a contribution 

from stochastic community assembly and subsequent competitive exclusion (Foster and Bell 

2012). 

Some members of the Alphaproteobacteria were also enriched by oil (Figure 8). Phylotypes 

affiliated with Roseobacter denitrificans NdAmb116 (cluster 1445; 99% sequence identity) 

were more abundant in the oiled sediment on day-12 (2.0% in 0-2 mm; 0.2% in 2-4 mm) and 

oiled floating biofilm (1.8%) than in corresponding non-oiled samples (Table 1). Members of 

the genus Roseobacter are metabolically diverse and also ubiquitous in coastal, and 

especially polluted environments (Nogales et al. 2007), forming associations with algae 

(Amin et al. 2012). Roseobacter are also frequently enriched in the presence of hydrocarbons, 

for example, clones of Roseobacter became abundant in oil-enrichment microcosms of 

seawater (Brakstad and Lødeng 2005; Prabagaran et al. 2007). McKew et al. (2007a) also 

reported the presence of 16S rRNA sequences of Roseobacter in both n-alkane and crude oil 

enrichments of seawater amended with nutrients.  Additionally, phylotypes related to 

Loktanella ZS2-13 (cluster 1420; 99% identity) were abundant in all oiled sediment and oiled 

floating biofilm (Table 1).The potential of hydrocarbon degradation by Loktanella spp. is 

unclear. However, Harwati et al. (2007) isolated strains of Loktanella from crude oil 

enrichments of seawater and some of these strains could degrade n-alkanes between C10 and 

C22. Clones of Loktanella have also been enriched in microcosms of diesel-amended seawater 

obtained in winter (Lanfranconi et al. 2010). 

Diatoms (Table 1; Online Resource 78) enriched by oil were related to Navicula phyllepta 

C15 (clusters 596_6, 596_17 and 36) with 95-99% identity with those detected by Coulon et 

al. (2012); and Dickieia ulvacea C23 (cluster 596_13), which were abundant in the day-3 

oiled floating biofilm. There is evidence that diatoms, such as Navicula, are directly involved 
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in aromatic hydrocarbon degradation (See Prince 2010). However, it is more likely that they 

encourage growth of oil-degrading bacteria (Abed 2010) by mechanisms discussed by 

McGenity et al. (2012).  

Oil also negatively affected some phylotypes resulting in their prevalence in non-oiled 

samples compared to the oiled ones (Online Resource 1011). These oil-sensitive phylotypes 

include Staleya sp. (cluster 1440; 98% sequence identity) constituting 5% in the non-oiled 

biofilm sequences compared to 0.3% of those from the oiled biofilm. There has been no 

report of the sensitivity of Staleya sp. to petroleum hydrocarbons.  

 

Isolation and characterisation of oil-degrading strains 

A total of 148 strains were isolated (Table 2) and partial sequencing of 16S rRNA genes from 

92 isolates (selected based on colony morphology and RFLP) was carried out. Phylogenetic 

analysis confirmed that a large number of these isolates belong to the Gammaproteobacteria 

(51) (Figure 6), branching with known OHCB, such as Alcanivorax (28), Thalassolituus (4) 

and Cycloclasticus (1), as well as some generalist hydrocarbon-degrading bacteria, such as 

Pseudomonas (12), Shewanella (3), and Vibrio (2). The 35 actinobacterial isolates (Figure 7) 

mostly belonged to the genus Streptomyces, while the Alphaproteobacteria (6) (Figure 8) 

included Roseobacter- and Thalassospira-affiliated strains. 

Two strains related to Thalassolituus oleovorans (99% identity) were isolated from the 

tetradecane-enrichment at week-1, but Alcanivorax spp. were not isolated from this 

enrichment possibly because they were out-competed by Thalassolituus (see McKew et al. 

2007a). Furthermore, T. oleovorans has also been reported to have a higher growth rate and 

tetradecane uptake than A. borkumensis (Yakimov et al. 2005). In contrast, on Forties crude 

oil, one isolate of Thalassolituus was obtained compared with 13 of Alcanivorax species 

(Figure 6).  
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Pristane was initially used as an internal standard to estimate crude oil biodegradation in 

biodegradation studies as it was thought to be recalcitrant, but representatives of many genera 

can grow on this branched-chain alkane, including Streptomyces, Microbacterium, 

Roseobacter and Salinibacterium all of which to the best of our knowledge, have not been 

previously reported to degrade this branched-chain alkane. Alcanivorax isolates (with 99 – 

100% identity to A. borkumensis) were obtained at week-1 from the pristane-enrichment. A. 

borkumensis is well known to degrade branch-chain alkanes (McKew et al. 2007a; Capello 

and Yakimov 2010). The cyclohexane-degrading isolates in this study consisted of a large 

diversity of Streptomyces and Pseudomonas phylotypes; a strain of Pseudomonas has been 

shown previously to degrade cyclohexane (Anderson et al. 1980).   

Shewanella and Pseudomonas were the only genera with strains isolated from both alkanes 

and PAHs-mix enrichments. Many marine hydrocarbon-degrading microbes can only degrade 

one class of hydrocarbon, thus the ability to degrade multiple classes supports the view that 

Shewenella and Pseudomonas have an important role in hydrocarbon degradation in marine 

environments. Indeed, both genera were cultured from anaerobic enrichments from beach 

sands polluted by the Deepwater Horizon oil spill (Kostka et al. 2011). Pseudomonas spp. are 

renowned pollutant-degrading terrestrial microbes, but can also play a major role in PAH 

degradation in marine (Berardesco et al. 1998) and estuarine (Niepceron et al. 2010) 

environments. Shewenella spp. have been implicated in hydrocarbon degradation in diverse 

marine environments, including Arctic sea-ice (Deppe et al. 2005). 

 Isolates belonging to Thalassospira and one of Cycloclasticus were isolated on PAH plates. 

Cycloclasticus representing one of the few OHCB that specialises in PAH degradation 

(Dyksterhouse et al. 1995; Kasai et al. 2002b; Teira et al. 2007; Niepceron et al. 2010).  

Thalassospira spp. are also known to metabolise PAHs (Cui et al. 2008; Kodama et al. 2008) 
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and it was one of the dominant genera in the oil mousse formed during the Deepwater 

Horizon oil spill (Liu and Liu 2013). 

There was little correspondence between the 454 pyrosequencing libraries and the isolated 

strains. For example, Oleibacter sp., which probably played the major role in the degradation 

of alkanes in the mesocosms, was not isolated from the hydrocarbon enrichments which were 

incubated at 20°C, a temperature lower than that needed for its optimal growth (25-30°C).  

However, the OHCB, Alcanivorax, Cycloclasticus and Thalassolituus spp. were cultured and 

detected in low relative abundance by pyrosequencing. Additionally, Roseobacter sp. was 

isolated from the pristane enrichment and abundantly detected in pyrosequencing libraries 

from the day-12 oiled sediment and oiled floating biofilm. These findings emphasise the 

importance of complementary approaches, whereby cultivation on hydrocarbons 

demonstrates the biodegradation capabilities of sediment communities, while 16S rRNA 

gene pyrosequence analysis of the community identifies those microbes that increase in 

relative abundance and so might be involved in oil degradation.  
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Tables 

Table 1 Phylogenetic clusters enriched in mudflat sediment and floating biofilm after oil additiona 

 

a CD-HIT was used in generating clusters with ≥ 95% identity to known phylotypes and sub-clusters with ≥ 97% sequence identity were formed from those clusters with very 

large sequence set. Representative sequences from each cluster were compared to the NCBI database using the Basic Local Alignment Search Tool (BLAST) for sequence 

similarity. O –: non-oiled sample, Oil +: Oiled sample. All oiled samples are in shaded columns. Highlighted figures show oil enrichment of corresponding clusters. 

 

  

     % of sequences in each sample 

0-2 mm 2-4 mm 
Floating 
Biofilm 

Cluster Closest Relative + Accession No. % 
Identity 

Order/ Family Group 2-h 
O + 

2-h 
O - 

d-3 
O + 

d-3 
O - 

d-12 
O + 

d-12 
O - 

d-12 
O + 

d-12 
O - 

d-3 
O + 

d-3 
O - 

1420  Loktanella (FJ195992.1) 99 Rhodobacteraceae Alphap 0.42 0.14 2.74 1.27 1.53 0.97 2.52 1.62 2.17 1.00 
1445  Roseobacter (FJ753033.1) 99 Rhodobacteraceae Alphap 0.00 0.00 0.00 0.27 2.04 0.65 0.21 0.00 1.83 0.40 
1435  Loktanella (FJ196061.1) 97 Rhodobacteraceae Alphap 0.21 0.14 0.00 0.00 1.02 0.32 0.84 0.32 0.00 0.20 
1497  Pedomicrobium (Y14313.1) 97 Rhizobiales Alphap 0.00 0.28 0.09 0.18 0.68 0.32 0.42 0.16 0.33 0.00 
1077  Oleibacter (AB435651.1) 97 Oceanospirillales Gammap 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 5.33 0.60 
596_6  Navicula (FJ002222.1) 98 Naviculales Bacillariop 4.18 0.85 0.00 2.81 0.51 0.16 0.00 0.65 12.50 9.18 
596_13  Dickieia (FJ002229.1) 99 Naviculales Bacillariop 1.04 0.00 2.56 0.82 0.85 1.46 1.26 0.97 5.50 0.80 
596_9  Pennate diatom (FJ002185.1) 98  Bacillariop 1.25 0.00 0.09 1.09 0.51 0.32 0.00 0.00 2.17 0.00 
596_17  Navicula (FJ002222.1) 98 Naviculales Bacillariop 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.50 0.00 
36  Diverse (Navicula) (FJ002222.1) 97 Naviculales Bacillariop 4.18 1.57 5.67 5.26 2.73 4.87 1.68 1.46 20.33 1.00 
1287  Navicula (FJ002222.1) 98 Naviculales Bacillariop 0.21 0.00 0.00 0.09 0.00 0.16 0.00 0.00 1.67 0.00 
1107  Cylindrotheca (FJ002223.1) 96 Bacillariales Bacillariop 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 1.17 0.00 
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Table 2 Summary of strains isolated from hydrocarbon-enrichments of mudflat sediment 
samples 
 
 Number of Strains 
 Enrichment Time Carbon Sourceb Media type 
Oiled Mesocosm TOTAL Week 1 Week 3 T F P C PAH mix Solid Liquid 
Day-12 45 14 31 8 4 12 15 6 19 26 
Day-28 47 27 20 6 10 19 9 3 30 17 
TOTAL 92 41 51 14 14 31 24 9 49 43 
 

b T: tetradecane; F: weathered Forties crude oil; P: pristane; C: Cyclohexane; PAH mix: Mixture of 

phenanthrene, pyrene and fluorene. 
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Figure legends 

Fig.1 Schematic diagram of the tidal mudflat mesocosms  

a. Map of the Colne Estuary in Essex, UK showing the sampling site for the tidal mesocosms. b. Side view of a 

mesocosm showing the reservoir tanks and the main mesocosm tanks. At low tide, water is pumped out of the 

main tanks via a hose into the reservoir while the reverse occurs at high tide. c. Surface view showing the oiled 

and non-oiled mesocosms each holding 25 cores of mudflat sediment 

 
Fig.2 Changes in Total Petroleum Hydrocarbon (TPH), alkane and PAH  values 

concentration in the mudflat sediments  

a. Relative TPH abundance computed by normalising TPH values to that of internal marker 1,2,3,4,5,6,7,8,9,10- 

decamethyl-anthracene. The value at each point represents the mean concentration of TPH from replicate 

samples. Vertical bars show standard error. Values above the columns are the average internal standard 

(1,2,3,4,5,6,7,8,9,10-Decamethyl-Anthracene) concentration in µg g-1 in both 0-2 mm and 2-4 mm sediment 

layers at each time point.  b. Remainder of n-alkanes in 0-2 mm sediment at each time point relative to 2-h. 

Values represent the mean amount of compounds from replicate samples. Vertical bars show standard error. 

Values above columns are C17/Pristane and C18/Phytane ratios at each time point. c. Remainder of PAHs in 0-2 

mm at each time point relative to 2-h. Values represent the mean amount of compounds from replicate samples. 

Vertical bars show standard error. Values above columns are diagnostic ratios at each time point.  Naphthalenes: 

C0-C3 naphthalene; Fluorenes: C0-C2 fluorene; Dibenzothiophenes: C0-C2 dibenzothiophene; Phenanthrenes: C0-

C2 phenanthrene; BaA: Benzo[a]anthracene; BkF: Benzo[k]fluoranthene; BbF: Benzo[b]fluoranthene; diBahA: 

Dibenzo[a,h]anthracene; BghiP: Benzo[g,h,i]perylene.  

 
Fig.3 Changes in microbial community composition of mudflat sediments  

a. PCA plot of mudflat sediment bacterial communities represented by the first two (F1 and F2) and first and 

third (F1 and F3) principal component factors showing 41% and 34% variability respectively between samples. 

Cluster X: oiled and non-oiled 2-h to day-6 sediment; Cluster Y: oiled and non-oiled day-12 to day-28 sediment. 

b. PCA plot of mudflat sediment archaeal communities represented by the first two (F1 and F2) and first and 

third (F1 and F3) principal components. PCA was based on Euclidean distance. 

 
Fig.4 Changes in bacterial community composition of 0-2 mm sediment and floating 

biofilms  

The PCA plot is represented by the first two (F1 and F2) and first and third (F1 and F3) principal components. 

PCA was based on Euclidean distance. 

 
Fig.5 Taxonomic classification of 16S rRNA gene 454 pyrosequencing reads from selected 

mudflat sediment and floating biofilm samples  

Sequences were classified on Greengenes using the RDP and NCBI classifier. The unassigned group contains 

sequences with no blast hits. a. Proportion of reads per higher taxa. b. Taxonomic composition of mudflat 

sediment and floating biofilm samples. Oil –ve: non-oiled sample, Oil +ve: Oiled sample. Number of reads per 
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sample: 2-h oiled: 479 sequences, 2-h non-oiled: 702 sequences, day-3 oiled: 1093 sequences, day-3 non-oiled: 

1103 sequences, 0-2 mm day-12 oiled: 587 sequences, 0-2 mm day-12 non-oiled: 616 sequences, 2-4 mm day-

12 oiled: 476 sequences, 2-4 mm day 12 non-oiled: 618 sequences, biofilm oiled: 600 sequences, biofilm non-

oiled: 501sequences 

 
Fig.6 Phylogenetic tree based on partial 16S rRNA (~395 bp) gene sequences of mudflat 

isolates and CD-HIT-generated clusters with ≥ 6 sequences (from the 454 sequencing 

libraries) belonging to the Gammaproteobacteria  

Sequences were aligned with the ClustalW application on the Bioedit programme and the tree was constructed 

with the Phylip suite using DNAdistance followed by the Neighbour-joining tree-making programme.  Bootsrap 

values were generated from 1000 data sets.  Branches with an asterisk are supported by bootstrap values ≥70%. 

The bar represents the average nucleotide substitution per base.  The 16S rRNA gene of Haloferax volcanii 

NCIMB 2012 (AY425724.1) was used as outgroup. 

† Clusters containing phylotypes that are also present in day-12 oiled mudflat sediment 

¶ Clusters containing phylotypes that were negatively affected by oil addition 

 
Fig.7 Phylogenetic tree based on partial 16S rRNA (~430 bp) gene sequences of mudflat 

isolates and CD-HIT-generated clusters with ≥ 6 sequences (from the 454 sequencing 

libraries) belonging to the Actinobacteria  

Sequences were aligned with the ClustalW application on the Bioedit programme and the tree was constructed 

with the Phylip suite using DNAdistance followed by the Neighbour-joining tree-making programme.  Bootsrap 

values were generated from 1000 data sets.  Branches with an asterisk are supported by bootstrap values ≥70%. 

The bar represents the average nucleotide substitution per base.  The 16S rRNA gene of Haloferax volcanii 

NCIMB 2012 (AY425724.1) was used as outgroup. 

† Clusters containing phylotypes that are also present in day-12 oiled mudflat sediment 

 
Fig.8 Phylogenetic tree based on partial 16S rRNA (~450 bp) gene sequences of mudflat 

isolates and CD-HIT generated clusters with ≥ 6 sequences (from the 454 sequencing 

libraries) belonging to the Alphaproteobacteria  

Sequences were aligned with the ClustalW application on the Bioedit programme and the tree was constructed 

with the Phylip suite using DNAdistance followed by the Neighbour-joining tree-making programme.  Bootsrap 

values were generated from 1000 data sets.  Branches with an asterisk are supported by bootstrap values ≥70%. 

The bar represents the average nucleotide substitution per base.  The 16S rRNA gene of Haloferax volcanii 

NCIMB 2012 (AY425724.1) was used as outgroup. 

† Clusters containing phylotypes that are also present in day-12 oiled mudflat sediment 

§ Clusters containing phylotypes that were enriched by oil addition 

¶ Clusters containing phylotypes that were negatively affected by oil addition 

 
 


