356 research outputs found

    Direct Interrogation of Viral Peptides Presented by the Class I HLA of HIV-Infected T Cells

    Get PDF
    Identification of CD8+ cytotoxic T lymphocyte (CTL) epitopes has traditionally relied upon testing of overlapping peptide libraries for their reactivity with T cells in vitro. Here, we pursued deep ligand sequencing (DLS) as an alternative method of directly identifying those ligands that are epitopes presented to CTLs by the class I human leukocyte antigens (HLA) of infected cells. Soluble class I HLA-A*11:01 (sHLA) was gathered from HIV-1 NL4-3-infected human CD4+ SUP-T1 cells. HLA-A*11:01 harvested from infected cells was immunoaffinity purified and acid boiled to release heavy and light chains from peptide ligands that were then recovered by size-exclusion filtration. The ligands were first fractionated by high-pH high-pressure liquid chromatography and then subjected to separation by nano-liquid chromatography (nano-LC)–mass spectrometry (MS) at low pH. Approximately 10 million ions were selected for sequencing by tandem mass spectrometry (MS/MS). HLA-A*11:01 ligand sequences were determined with PEAKS software and confirmed by comparison to spectra generated from synthetic peptides. DLS identified 42 viral ligands presented by HLA-A*11:01, and 37 of these were previously undetected. These data demonstrate that (i) HIV-1 Gag and Nef are extensively sampled, (ii) ligand length variants are prevalent, particularly within Gag and Nef hot spots where ligand sequences overlap, (iii) noncanonical ligands are T cell reactive, and (iv) HIV-1 ligands are derived from de novo synthesis rather than endocytic sampling. Next-generation immunotherapies must factor these nascent HIV-1 ligand length variants and the finding that CTL-reactive epitopes may be absent during infection of CD4+ T cells into strategies designed to enhance T cell immunity

    Identification of Interleukin-27 (IL-27)/IL-27 Receptor Subunit Alpha as a Critical Immune Axis for In Vivo HIV Control

    Get PDF
    Intact and broad immune cell effector functions and specific individual cytokines have been linked to HIV disease outcome, but their relative contribution to HIV control remains unclear. We asked whether the proteome of secreted cytokines and signaling factors in peripheral blood can be used to discover specific pathways critical for host viral control. A custom glass-based microarray, able to measure >600 plasma proteins involved in cell-to-cell communication, was used to measure plasma protein profiles in 96 HIV-infected, treatment-naive individuals with high (>50,000) or low (600 soluble proteins, our data highlight the importance of Th17 cells and Wnt/β-catenin signaling in HIV control and especially identify the IL-27/IL-27 receptor subunit alpha (IL-27RA) axis as a predictor of plasma viral load and proviral copy number in the peripheral blood. These data may provide important guidance to therapeutic approaches in the HIV cure agenda

    Neural Stem/Progenitor Cells from the Adult Human Spinal Cord Are Multipotent and Self-Renewing and Differentiate after Transplantation

    Get PDF
    Neural stem/progenitor cell (NSPC) transplantation is a promising therapy for spinal cord injury (SCI). However, little is known about NSPC from the adult human spinal cord as a donor source. We demonstrate for the first time that multipotent and self-renewing NSPC can be cultured, passaged and transplanted from the adult human spinal cord of organ transplant donors. Adult human spinal cord NSPC require an adherent substrate for selection and expansion in EGF (epidermal growth factor) and FGF2 (fibroblast growth factor) enriched medium. NSPC as an adherent monolayer can be passaged for at least 9 months and form neurospheres when plated in suspension culture. In EGF/FGF2 culture, NSPC proliferate and primarily express nestin and Sox2, and low levels of markers for differentiating cells. Leukemia inhibitory factor (LIF) promotes NSPC proliferation and significantly enhances GFAP expression in hypoxia. In differentiating conditions in the presence of serum, these NSPC show multipotentiality, expressing markers of neurons, astrocytes, and oligodendrocytes. Dibutyryl cyclic AMP (dbcAMP) significantly enhances neuronal differentiation. We transplanted the multipotent NSPC into SCI rats and show that the xenografts survive, are post-mitotic, and retain the capacity to differentiate into neurons and glia

    Chondroitinase and Growth Factors Enhance Activation and Oligodendrocyte Differentiation of Endogenous Neural Precursor Cells after Spinal Cord Injury

    Get PDF
    The adult spinal cord harbours a population of multipotent neural precursor cells (NPCs) with the ability to replace oligodendrocytes. However, despite this capacity, proliferation and endogenous remyelination is severely limited after spinal cord injury (SCI). In the post-traumatic microenvironment following SCI, endogenous spinal NPCs mainly differentiate into astrocytes which could contribute to astrogliosis that exacerbate the outcomes of SCI. These findings emphasize a key role for the post-SCI niche in modulating the behaviour of spinal NPCs after SCI. We recently reported that chondroitin sulphate proteoglycans (CSPGs) in the glial scar restrict the outcomes of NPC transplantation in SCI by reducing the survival, migration and integration of engrafted NPCs within the injured spinal cord. These inhibitory effects were attenuated by administration of chondroitinase (ChABC) prior to NPC transplantation. Here, in a rat model of compressive SCI, we show that perturbing CSPGs by ChABC in combination with sustained infusion of growth factors (EGF, bFGF and PDGF-AA) optimize the activation and oligodendroglial differentiation of spinal NPCs after injury. Four days following SCI, we intrathecally delivered ChABC and/or GFs for seven days. We performed BrdU incorporation to label proliferating cells during the treatment period after SCI. This strategy increased the proliferation of spinal NPCs, reduced the generation of new astrocytes and promoted their differentiation along an oligodendroglial lineage, a prerequisite for remyelination. Furthermore, ChABC and GF treatments enhanced the response of non-neural cells by increasing the generation of new vascular endothelial cells and decreasing the number of proliferating macrophages/microglia after SCI. In conclusions, our data strongly suggest that optimization of the behaviour of endogenous spinal NPCs after SCI is critical not only to promote endogenous oligodendrocyte replacement, but also to reverse the otherwise detrimental effects of their activation into astrocytes which could negatively influence the repair process after SCI

    A phase I randomized therapeutic MVA-B vaccination improves the magnitude and quality of the T cell immune responses in HIV-1-infected subjects on HAART

    Get PDF
    Trial Design Previous studies suggested that poxvirus-based vaccines might be instrumental in the therapeutic HIV field. A phase I clinical trial was conducted in HIV-1-infected patients on highly active antiretroviral therapy (HAART), with CD4 T cell counts above 450 cells/mm3 and undetectable viremia. Thirty participants were randomized (2:1) to receive either 3 intramuscular injections of MVA-B vaccine (coding for clade B HIV-1 Env, Gag, Pol and Nef antigens) or placebo, followed by interruption of HAART. Methods The magnitude, breadth, quality and phenotype of the HIV-1-specific T cell response were assayed by intracellular cytokine staining (ICS) in 22 volunteers pre- and post-vaccination. Results MVA-B vaccine induced newly detected HIV-1-specific CD4 T cell responses and expanded pre-existing responses (mostly against Gag, Pol and Nef antigens) that were high in magnitude, broadly directed and showed an enhanced polyfunctionality with a T effector memory (TEM) phenotype, while maintaining the magnitude and quality of the pre-existing HIV-1- specific CD8 T cell responses. In addition, vaccination also triggered preferential CD8+ T cell polyfunctional responses to the MVA vector antigens that increase in magnitude after two and three booster doses

    The Search for Host Genetic Factors of HIV/AIDS Pathogenesis in the Post-Genome Era: Progress to Date and New Avenues for Discovery

    Get PDF
    Though pursuit of host genetic factors that influence the pathogenesis of HIV began over two decades ago, progress has been slow. Initial genome-level searches for variations associated with HIV-related traits have yielded interesting candidates, but less in the way of novel pathways to be exploited for therapeutic targets. More recent genome-wide association studies (GWAS) that include different phenotypes, novel designs, and that have examined different population characteristics suggest novel targets and affirm the utility of additional searches. Recent findings from these GWAS are reviewed, new directions for research are identified, and the promise of systems biology to yield novel insights is discussed

    CTL Responses of High Functional Avidity and Broad Variant Cross-Reactivity Are Associated with HIV Control

    Get PDF
    Cytotoxic T lymphocyte (CTL) responses targeting specific HIV proteins, in particular Gag, have been associated with relative control of viral replication in vivo. However, Gag-specific CTL can also be detected in individuals who do not control the virus and it remains thus unclear how Gag-specific CTL may mediate the beneficial effects in some individuals but not in others. Here, we used a 10mer peptide set spanning HIV Gag-p24 to determine immunogen-specific T-cell responses and to assess functional properties including functional avidity and cross-reactivity in 25 HIV-1 controllers and 25 non-controllers without protective HLA class I alleles. Our data challenge the common belief that Gag-specific T cell responses dominate the virus-specific immunity exclusively in HIV-1 controllers as both groups mounted responses of comparable breadths and magnitudes against the p24 sequence. However, responses in controllers reacted to lower antigen concentrations and recognized more epitope variants than responses in non-controllers. These cross-sectional data, largely independent of particular HLA genetics and generated using direct ex-vivo samples thus identify T cell responses of high functional avidity and with broad variant reactivity as potential functional immune correlates of relative HIV control

    Therapeutic vaccine in chronically Hiv-1-infected patients

    Get PDF
    Therapeutic vaccinations aim to re-educate human immunodeficiency virus (HIV)-1specific immune responses to achieve durable control of HIV-1 replication in virally suppressed infected individuals after antiretroviral therapy (ART) is interrupted. In a double blinded, placebocontrolled phase IIa multicenter study, we investigated the safety and immunogenicity of intranodal administration of the HIVACAT T cell Immunogen (HTI)-TriMix vaccine. It consists of naked mRNA based on cytotoxic T lymphocyte (CTL) targets of subdominant and conserved HIV-1 regions (HTI), in combination with mRNAs encoding constitutively active TLR4, the ligand for CD40 and CD70 as adjuvants (TriMix). We recruited HIV-1-infected individuals under stable ART. Study-arms HTI-TriMix, TriMix or Water for Injection were assigned in an 8:3:3 ratio. Participants received three vaccinations at weeks 0, 2, and 4 in an inguinal lymph node. Two weeks after the last vaccination, immunogenicity was evaluated using ELISpot assay. ART was interrupted at week 6 to study the effect of the vaccine on viral rebound. The vaccine was considered safe and well tolerated. Eighteen percent (n = 37) of the AEs were considered definitely related to the study product (grade 1 or 2). Three SAEs occurred: two were unrelated to the study product, and one was possibly related to ART interruption (ATI). ELISpot assays to detect T cell responses using peptides covering the HTI sequence showed no significant differences in immunogenicity between groups. There were no significant differences in viral load rebound dynamics after ATI between groups. The vaccine was safe and well tolerated. We were not able to demonstrate immunogenic effects of the vaccine
    corecore