862 research outputs found

    Early Universe Constraints on Time Variation of Fundamental Constants

    Get PDF
    We study the time variation of fundamental constants in the early Universe. Using data from primordial light nuclei abundances, CMB and the 2dFGRS power spectrum, we put constraints on the time variation of the fine structure constant α\alpha, and the Higgs vacuum expectation value withoutassuminganytheoreticalframework.Avariationin without assuming any theoretical framework. A variation in leads to a variation in the electron mass, among other effects. Along the same line, we study the variation of α\alpha and the electron mass mem_e. In a purely phenomenological fashion, we derive a relationship between both variations.Comment: 18 pages, 12 figures, accepted for publication in Physical Review

    Bardeen-Petterson effect and the disk structure of the Seyfert galaxy NGC 1068

    Get PDF
    VLBA high spatial resolution observations of the disk structure of the active galactic nucleus NGC 1068 has recently revealed that the kinematics and geometry of this AGN is well characterized by an outer disk of H2O maser emission having a compact milliarcsecond (parsec) scale structure, which is encircling a thin rotating inner disk surrounding a ~10^7 M_\sun compact mass, likely a black hole. A curious feature in this source is the occurrence of a misalignment between the inner and outer parts of the disk, with the galaxy's radio jet being orthogonal to the inner disk. We interpret this peculiar configuration as due to the Bardeen-Petterson effect, a general relativistic effect that warps an initially inclined (to the black hole equator) viscous disk, and drives the angular momentum vector of its inner part into alignment with the rotating black hole spin. We estimate the time-scale for both angular momenta to get aligned as a function the spin parameter of the Kerr black hole. We also reproduce the shape of the parsec and kiloparsec scale jets, assuming a model in which the jet is precessing with a period and aperture angle that decrease exponentially with time, as expected from the Bardeen-Petterson effect.Comment: 12 pages, 3 figures, accepted for publication in The Astrophysical Journa

    A multi-institutional and interdisciplinary approach to the assessment of vulnerability and adaptation to climate change in the Peruvian Central Andes: problems and prospects

    Get PDF
    A local integrated assessment of the vulnerability and adaptation to climate change in the Mantaro River Basin, located in Peruvian Central Andes, was developed between years 2003 to 2005. In this paper we present some lessons learned during the development of this study, emphasizing the multi-institutional and interdisciplinary efforts, briefly showing the methodological aspects, and pointing out the main problems found

    Nonlinear electrodynamics and CMB polarization

    Full text link
    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα=(2.4±1.9)\Delta \alpha = (-2.4 \pm 1.9)^\circ. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L(X/Λ4)δ1  XL\sim (X/\Lambda^4)^{\delta - 1}\; X , where X=1/4FαβFαβX=1/4 F_{\alpha\beta} F^{\alpha \beta}, and δ\delta the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (xx)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.Comment: 17 pages, 2 figures, minor changes, references adde

    Observational evidence of spin-induced precession in active galactic nuclei

    Full text link
    We show that it is possible to explain the physical origin of jet precession in active galactic nuclei (AGNs) through the misalignment between the rotation axes of the accretion disk and of the Kerr black hole. We apply this scenario to quasars, Seyfert galaxies and also to the Galactic Center black hole Sgr A*, for which signatures of either jet or disk precession have been found. The formalism adopted is parameterized by the ratio of the precession period to the black hole mass and can be used to put constraints to the physical properties of the accretion disk as well as to the black hole spin in those systems.Comment: 10 pages, 1 figure, accepted for publication in ApJ Letter

    Testing Primordial Abundances With Sterile Neutrinos

    Full text link
    The mixing between sterile and active neutrinos is taken into account in the calculation of Big Bang Nucleosynthesis. The abundances of primordial elements, like D, 3He, 4He and 7Li, are calculated by including sterile neutrinos, and by using finite chemical potentials. It is found that the resulting theoretical abundances are consistent with WMAP data on baryonic densities, and with limits of LSND on mixing angles, only if 7Li is excluded from the statistical analysis of theoretical and experimental results.Comment: 7 pages, 3 figures, 1 table, 34 reference

    Effects of CPT and Lorentz Invariance Violation on Pulsar Kicks

    Full text link
    The breakdown of Lorentz's and CPT invariance, as described by the Extension of the Standard Model, gives rise to a modification of the dispersion relation of particles. Consequences of such a modification are reviewed in the framework of pulsar kicks induced by neutrino oscillations (active-sterile conversion). A peculiar feature of the modified energy-momentum relations is the occurrence of terms of the form \delta {\bbox \Pi}\cdot {\bf {\hat p}}, where \delta {\bbox \Pi} accounts for the difference of spatial components of flavor depending coefficients which lead to the departure of the Lorentz symmetry, and p^=p/p{\bf {\hat p}}={\bf p}/p, being p{\bf p} the neutrino momentum. Owing to the relative orientation of p{\bf p} with respect to \delta {\bbox \Pi}, the {\it coupling} \delta {\bbox \Pi}\cdot {\bf {\hat p}} may induce the mechanism to generate the observed pulsar velocities. Topics related to the velocity distribution of pulsars are also discussed.Comment: 10 pages, 1 figur

    I. Flux and color variations of the quadruply imaged quasar HE 0435-1223

    Get PDF
    aims: We present VRi photometric observations of the quadruply imaged quasar HE 0435-1223, carried out with the Danish 1.54m telescope at the La Silla Observatory. Our aim was to monitor and study the magnitudes and colors of each lensed component as a function of time. methods: We monitored the object during two seasons (2008 and 2009) in the VRi spectral bands, and reduced the data with two independent techniques: difference imaging and PSF (Point Spread Function) fitting.results: Between these two seasons, our results show an evident decrease in flux by ~0.2-0.4 magnitudes of the four lensed components in the three filters. We also found a significant increase (~0.05-0.015) in their V-R and R-i color indices. conclusions: These flux and color variations are very likely caused by intrinsic variations of the quasar between the observed epochs. Microlensing effects probably also affect the brightest "A" lensed component.Comment: 10 pages, 8 figure

    Neutrino Oscillations at Supernova Core Bounce Generate the Strongest Gravitational-Wave Bursts

    Full text link
    During the core bounce of a supernova collapse resonant active-to-active (νaνa\nu_a \to \nu_a), as well as active-to-sterile (νaνs\nu_a \to \nu_s) neutrino (ν\nu) oscillations can take place. Besides, over this phase weak magnetism increases antineutrino (νˉ\bar{\nu}) mean free paths, and thus its luminosity. Because the oscillation feeds mass-energy into the target ν\nu species, the large mass-squared difference between species (νaνs\nu_a \to \nu_s) implies a huge amount of power to be given off as gravitational waves (LGWs1049ergsL_{\textrm{GWs}} \sim 10^{49}erg s^{-1}),duetoanisotropicbutcoherent), due to anisotropic but coherent \nuflowovertheoscillationlength.Thisanisotropyinthe flow over the oscillation length. This anisotropy in the \nufluxisdrivenbyboththeuniversalspinrotationandthespinmagneticcoupling.Thenewspacetimestrainestimatedthiswayisstillseveralordersofmagnitudelargerthanthosefrom-flux is driven by both the {\it universal spin-rotation} and the spin-magnetic coupling. The new spacetime strain estimated this way is still several orders of magnitude larger than those from \nu$ diffusion (convection and cooling) or quadrupole moments of the neutron star matter. This new feature turns these bursts the more promising supernova gravitational-wave signal that may be detected by observatories as LIGO, VIRGO, etc., for distances far out to the VIRGO cluster of galaxies.Comment: 10 pages, 1 figure, Proceedings of International Workshop on Astronomy and Relativistic Astrophysics, Olinda (Brazil), October 12-16 (2003), to be published in Int. J. Mod. Phys.
    corecore