3,852 research outputs found
The effects of graded motor imagery and its components on chronic pain: A systematic review and meta-analysis
This is the post-print version of the final paper published in The Journal of Pain. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 The American Pain Society.Graded motor imagery (GMI) is becoming increasingly used in the treatment of chronic pain conditions. The objective of this systematic review was to synthesize all evidence concerning the effects of GMI and its constituent components on chronic pain. Systematic searches were conducted in 10 electronic databases. All randomized controlled trials (RCTs) of GMI, left/right judgment training, motor imagery, and mirror therapy used as a treatment for chronic pain were included. Methodological quality was assessed using the Cochrane risk of bias tool. Six RCTs met our inclusion criteria, and the methodological quality was generally low. No effect was seen for left/right judgment training, and conflicting results were found for motor imagery used as stand-alone techniques, but positive effects were observed for both mirror therapy and GMI. A meta-analysis of GMI versus usual physiotherapy care favored GMI in reducing pain (2 studies, n = 63; effect size, 1.06 [95% confidence interval, .41, 1.71]; heterogeneity, I2 = 15%). Our results suggest that GMI and mirror therapy alone may be effective, although this conclusion is based on limited evidence. Further rigorous studies are needed to investigate the effects of GMI and its components on a wider chronic pain population.NHMR
Geometry of Control-Affine Systems
Motivated by control-affine systems in optimal control theory, we introduce
the notion of a point-affine distribution on a manifold X - i.e., an affine
distribution F together with a distinguished vector field contained in F. We
compute local invariants for point-affine distributions of constant type when
dim(X)=n, rank(F)=n-1, and when dim(X)=3, rank(F)=1. Unlike linear
distributions, which are characterized by integer-valued invariants - namely,
the rank and growth vector - when dim(X)<=4, we find local invariants depending
on arbitrary functions even for rank 1 point-affine distributions on manifolds
of dimension 2
Geometry of Optimal Control for Control-Affine Systems
Motivated by the ubiquity of control-affine systems in optimal control
theory, we investigate the geometry of point-affine control systems with metric
structures in dimensions two and three. We compute local isometric invariants
for point-affine distributions of constant type with metric structures for
systems with 2 states and 1 control and systems with 3 states and 1 control,
and use Pontryagin's maximum principle to find geodesic trajectories for
homogeneous examples. Even in these low dimensions, the behavior of these
systems is surprisingly rich and varied
New measurements of cosmic infrared background fluctuations from early epochs
Cosmic infrared background fluctuations may contain measurable contribution
from objects inaccessible to current telescopic studies, such as the first
stars and other luminous objects in the first Gyr of the Universe's evolution.
In an attempt to uncover this contribution we have analyzed the GOODS data
obtained with the Spitzer IRAC instrument, which are deeper and cover larger
scales than the Spitzer data we have previously analyzed. Here we report these
new measurements of the cosmic infrared background (CIB) fluctuations remaining
after removing cosmic sources to fainter levels than before. The remaining
anisotropies on scales > 0.5 arcmin have a significant clustering component
with a low shot-noise contribution. We show that these fluctuations cannot be
accounted for by instrumental effects, nor by the Solar system and Galactic
foreground emissions and must arise from extragalactic sources.Comment: Ap.J.Letters, in pres
Cosmic Infrared Background Fluctuations and Zodiacal Light
We have performed a specific observational test to measure the effect that
the zodiacal light can have on measurements of the spatial fluctuations of the
near-IR background. Previous estimates of possible fluctuations caused by
zodiacal light have often been extrapolated from observations of the thermal
emission at longer wavelengths and low angular resolution, or from IRAC
observations of high latitude fields where zodiacal light is faint and not
strongly varying with time. The new observations analyzed here target the
COSMOS field, at low ecliptic latitude where the zodiacal light intensity
varies by factors of over the range of solar elongations at which the
field can be observed. We find that the white noise component of the spatial
power spectrum of the background is correlated with the modeled zodiacal light
intensity. Roughly half of the measured white noise is correlated with the
zodiacal light, but a more detailed interpretation of the white noise is
hampered by systematic uncertainties that are evident in the zodiacal light
model. At large angular scales () where excess power above the
white noise is observed, we find no correlation of the power with the modeled
intensity of the zodiacal light. This test clearly indicates that the large
scale power in the infrared background is not being caused by the zodiacal
light.Comment: 17 pp. Accepted for publication in the Ap
- …