We have performed a specific observational test to measure the effect that
the zodiacal light can have on measurements of the spatial fluctuations of the
near-IR background. Previous estimates of possible fluctuations caused by
zodiacal light have often been extrapolated from observations of the thermal
emission at longer wavelengths and low angular resolution, or from IRAC
observations of high latitude fields where zodiacal light is faint and not
strongly varying with time. The new observations analyzed here target the
COSMOS field, at low ecliptic latitude where the zodiacal light intensity
varies by factors of ∼2 over the range of solar elongations at which the
field can be observed. We find that the white noise component of the spatial
power spectrum of the background is correlated with the modeled zodiacal light
intensity. Roughly half of the measured white noise is correlated with the
zodiacal light, but a more detailed interpretation of the white noise is
hampered by systematic uncertainties that are evident in the zodiacal light
model. At large angular scales (≳100") where excess power above the
white noise is observed, we find no correlation of the power with the modeled
intensity of the zodiacal light. This test clearly indicates that the large
scale power in the infrared background is not being caused by the zodiacal
light.Comment: 17 pp. Accepted for publication in the Ap