25,566 research outputs found
Theory of hydromagnetic turbulence
The present state of MHD turbulence theory as a possible solar wind research tool is surveyed. The theory is statistical, and does not make statements about individual events. The ensembles considered typically have individual realizations which differ qualitatively, unlike equilibrium statistical mechanics. Most of the theory deals with highly symmetric situations; most of these symmetries have yet to be tested in the solar wind. The applicability of MHD itself to solar wind parameters is highly questionable; yet it has no competitors, as a potentially comprehensive dynamical description. The purpose of solar wind research require sharper articulation. If they are to understand radial turbulent plasma flows from spheres, laboratory experiments and numerical solution of equations of motion may be cheap alternative to spacecraft. If "real life" information is demanded, multiple spacecraft with variable separation may be necessary to go further. The principal emphasis in the theory so far has been on spectral behavior for spatial covariances in wave number space. There is no respectable theory of these for highly anisotropic situations. A rather slow development of theory acts as a brake on justifiable measurement, at this point
A B-B-G-K-Y framework for fluid turbulence
A kinetic theory for fluid turbulence is developed from the Liouville equation and the associated BBGKY hierarchy. Real and imaginary parts of Fourier coefficients of fluid variables play the roles of particles. Closure is achieved by the assumption of negligible five-coefficient correlation functions and probability distributions of Fourier coefficients are the basic variables of the theory. An additional approximation leads to a closed-moment description similar to the so-called eddy-damped Markovian approximation. A kinetic equation is derived for which conservation laws and an H-theorem can be rigorously established, the H-theorem implying relaxation of the absolute equilibrium of Kraichnan. The equation can be cast in the Fokker-Planck form, and relaxation times estimated from its friction and diffusion coefficients. An undetermined parameter in the theory is the free decay time for triplet correlations. Some attention is given to the inclusion of viscous damping and external driving forces
Parametric excitation of transverse waves in a plasma
Transverse electromagnetic wave propagation in cold plasma by external electric field oscillatio
Validity of the electrostatic approximation
Existence criteria for normal modes in magnetized plasma related to electrostatic approximatio
Resistive Magnetohydrodynamic Equilibria in a Torus
It was recently demonstrated that static, resistive, magnetohydrodynamic
equilibria, in the presence of spatially-uniform electrical conductivity, do
not exist in a torus under a standard set of assumed symmetries and boundary
conditions. The difficulty, which goes away in the ``periodic straight cylinder
approximation,'' is associated with the necessarily non-vanishing character of
the curl of the Lorentz force, j x B. Here, we ask if there exists a spatial
profile of electrical conductivity that permits the existence of zero-flow,
axisymmetric r esistive equilibria in a torus, and answer the question in the
affirmative. However, the physical properties of the conductivity profile are
unusual (the conductivity cannot be constant on a magnetic surface, for
example) and whether such equilibria are to be considered physically possible
remains an open question.Comment: 17 pages, 4 figure
A statistical formulation of one-dimensional electron fluid turbulence
A one-dimensional electron fluid model is investigated using the mathematical methods of modern fluid turbulence theory. Non-dissipative equilibrium canonical distributions are determined in a phase space whose co-ordinates are the real and imaginary parts of the Fourier coefficients for the field variables. Spectral densities are calculated, yielding a wavenumber electric field energy spectrum proportional to k to the negative second power for large wavenumbers. The equations of motion are numerically integrated and the resulting spectra are found to compare well with the theoretical predictions
Equal Employment Opportunity Commission, Plaintiff, v. Leiferman Enterprises, LLC, d/b/a Harmon Autoglass, and Auto Glass Repair and Windshield Replacement Services, Inc., Defendant.
Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field
A strong external dc magnetic field introduces a basic anisotropy into incompressible magnetohydrodynamic turbulence. The modifications that this is likely to produce in the properties of the turbulence are explored for the high Reynolds number case. The conclusion is reached that the turbulent spectrum splits into two parts: an essentially two dimensional spectrum with both the velocity field and magnetic fluctuations perpendicular to the dc magnetic field, and a generally weaker and more nearly isotropic spectrum of Alfven waves. A minimal characterization of the spectral density tensors is given. Similarities to measurements from the Culham-Harwell Zeta pinch device and the UCLA Macrotor Tokamak are remarked upon, as are certain implications for the Belcher and Davis measurements of magnetohydrodynamic turbulence in the solar wind
Plasma physics abstracts, 1 January 1966 through 31 December 1967
Bibliography containing 26 references with abstracts on plasma physics research, 1966-196
Computation of inverse magnetic cascades
Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to Tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed
- …
