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ABSTRACT

Inverse cascades of magnetic quantities for turbulent incompressible
magnetohydrodynamics are reviewed, for two and three dimensions. The theory is
extended to the Strauss equations, a description intermediate between two and
three dimensions appropriate to tokamak magnetofluids. Consideration cf the
absolute equilibrium Gibbs ensemble for the system leads to a prediction of an
inverse cascade of magnetic helicity, which may manifest itself as a major
disruption. An agenda for computational investigation of this conjecture is

propos-d,

*
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Y ,i% i I. INTRODUCTION
l 1*

A. Background

Over the last fifieen years, the term "inverse cascade" has been ap-
plied to a class of turbulent processes in which the small spatial scales
high wavenumbers) feed some quantity, by nonlinear processes, to the large
spatial scales (low wavenumbers). A variety of quantities can be inversely
cascaded, depending upon the medium and upon the geometry: the process can look
stite different in different cases., Inverse cascades have been most intensively
studied in Navier-Stokes f{luids and incompressible magnetofluids. Most progress
has been numerical, and the accurate computation of an inverse cascade is a
strenuous numerical challenge because of the high spatial resolution requirsad.
This needed high spatial resolution considerably restricts the range of allowable
Reynolds numbers, and the implications of these restrictions have yet to be
felt in the plasma simulation community, though the hydrodynamicists are pain-
fully aware of them.

The idea of an inverse cascade first appeared in connection with flows
1,2,3,4,5 Navier-Stokes fluids, then in magnetofluids, first

6,7,8,9 and then in two.lo’ll’lz Most of the work has assumed

in two-dimensional
in three dimensions
the simplest and most highly idealized boundary conditions: rectangular periodic
ones. But now, possible relevance to the "magnetic dynamo" and to magnetic
fusion confinement is exerting pressure for computations with fewer idealiza-
icns and more realism. Computations are cruciazl for demonstrating most of the
theoretical consequences. Analytical indicators can be used to anticipate the
existence of inverse cascades, but accurate prediction of any of their details
seems inherently to require sophisticated numerics. Fo one has had much success
proceeding solely with pencil and paper. The intention here is to clarify the
implications of certain classes of possible computations.
The mechanism underlying an inverse cascade is essentially simple.3’13
Two things seem tc be necessary: (1) a dissipation which only becomes effective
at small spatial scales, such as viscous or Ohmic dissipation; and (2) two or
more non-dissipative integral invariants of the motion which are representable

45 sums which emphasize differently the large and small scales.




Take an example: two~dimensional Navier-Stokes flow at high Reynolds
numbers (the same mathematics does as well for electrostatic guiding center
plasmas). The two non-dissipative invariants, expressed in terms of the Fourier
coefficients of the velocity field y(k,t), are the energy per unit mass E and
the mean-square vorticity or "enstrophy" Q:

B =1, |yl b

. 2= K |v(k,t)

The non-dissipative terms in the equations of motion are the nonlinear ones,

and if they transfer excitations to the bigh ]g[ part of the spectrum (as they
surely must), the only way the simultaneous constancy of both E and 2 can be
preserved is for there to be an accompanying transfer to low |k|. The additional
constant of the non-dissipative motion Q (which is not conserved in three di-~
mensions) demands that the non-dissipative (i.e., non-linear) terms in the
Navier-Stokes equation must transfer excitations in both directions in wavenumber
space, if there is any transfer at all. The paths in E space by which the transfer
occurs are a secondary issue, but there is nothing simple about them.

Subtleties arise when one begins to ask sharper gquestions, such as
which quantity gets transferred in which direction and how fast. These questions
have been earnestly addre:ssed in the literature and do not lead to short, graphic
answers, only to long, contingent ones. Relatively simple and persuasive answers
can be given for the quasi-steady state, when a source of excitations, band-
limited in wavenumber space, is regarded as injecting the excitations at a sta-
tistically steady rate and attention is directed toward the spectra and the
transfer rates of the cascaded quantities. The word "source" can mean lots of
things, from an externally-applied forcingz field (such as an electric field or
current field, in magneto-hydrodynamics) to some microscopic instability which
might be present.

Computationally, one often works initial value problems starting from
smooth initial conditions, and in that case, it may be useful to identify a
particular unstable normal mode as associated with the onset of the turbulent
fluctuations. In the laboratory one usually does not work an initial value
provlem starting from smooth initial conditions; rather, unstable systems are
often created only with some level of excitations already in place. It may then

be a less interesting question as to which "mode" is the "most unstable" one,



because the fully developed and observed state may bear little relation to the
kind of smooth profiles on which any kind of stability calculations can be done.
A hydrodynamic analogy is pipe flow far above the critical Reynolds number:

there is hardly even an academic relation between the details of the flow and
any stability calculation that can be done. Particularly in plasma confinement
experiments, there may be many s.imultaneous sources of excitation: a gradient
in virtually any mean field variable (pressure, magnetic field, electric current,
flow velocity, density, temperature) is potentially a source of excitations.
Many sources may act simultaneously. They may interfere with or reinforce each
other.

What happens to the excitations once they are launched on their Journey
through k-space may be the more interesting and the more physically significant
question. There is a clear difference between turbulent processes that transfer
their disturbances to small rather than large scales from the point of view of
thermonuclear confinement. In the former case, the worst that can happen is an
enhanced transport, a disadvantage which may well be offset by an enhanced heating.
(A tokamsk which had no "directly cascaded" turbulence of this kind might not heat
at all!) Transfer toward large scales can clearly be more serious: macroscopic
bulk deformations can redistribute and disrupt the plasms variables and perhaps
terminate the confinement. Disruptions in tokamaks have some of the flavor of
what one might expect from an inverse cascade, though experiments with highly
resolved enough diagnostics to study the small scales of what happens in a major
iisruption appear not to have been carried out. (A respectable beginning on the

preblem was made some time ago by Hutchinsonlh and Mbrton.ls) For the near-term
future, connections between tokamak disruptions and possible inverse cascades are

likely to continue to be primarily a numerical subject.



B. Numerical Examples

We briefly remark upon three examples of attempted computations of
inverse magnetic cascades. The quantities expected to be inversely cascaded
are mean square vector potential in two dimensions and magnetic helicity in
three.

Figure 1, due to Pouquet,l6

displays the results of a closure calcula-
tion of an inversely cascading magnetic vector potential spectrum in two dimen-
sions. The mechanical and magnetic Reynolds numbers are of the order of 4500.

The excitations are injected at a wave number indicated by an arrow, and every-
thing at lower wave numbers is the result of back transfer in wave number space.
The computation is not a direct solution of the dynamical equations themselves,

but rather a statistical, eddy-damped "closure" approximetion to them which per-
mits higher values of the Reynolds numbers thac a direct computation could possibly
permit with present-day computers.

Figure 2, due to Fyfe et al.,le shows a direct numerical solution of
the two-dimensional magnetohydrodynamic equations, driven by a random magnetic
forcing confined to the indicated wavenumber band. All the points below k2 = 55
correspond to inverse magnetic transfer to long wavelengths., This, incidentally,
is a calculation in which spatial resolution was inadequate to the Reynolds number
chosen, and as a consequence there is no "dissipation range'", or region of pre-
cipitous fall-off at increasing k, apparent at the upper end.

Figure 3 is taken from Meneguzzi et al.,lT and illustrates the results
of a direct computation from the three-dimensional incompressible magnetohydro-
dynamic equations, again with a random forcing, but this time with a helical,
mechanical one. A weak "seed" magnetic field amplifies with time as the injected
kinetic energy converts into magnetic energy through dynamo action. The back
transfer of magnetic helicity is apparent.

Additional direct inverse cascade computations which may be mentioned
are those of Lilly18 and Fyfe et a.l.,12 for the two-dimensional Navier Stokes
case; see also Pouquet et al.lg for the corresponding closure computation. Pouquet

and PattersonT

have displaysd three-dimensional magnetohydrodymamic direct compu-
tations. Pouquet et al. have given three-dimensional inverse cascade closure
computations for incompressible magnetohydrodynamics.

All the computations cited assume rectangular periodic boundary conditions

with no net flux of any quantity through any cross section of the system,



II. THE STRAUSS EQUATIONS; ABSOLUTE EQUILIBRIUM ENSEMBLE THEORY

Rectangular periodic boundary conditions, which characterize most of
the computational efforts to study inverse cascades, idealize away several key
features of real systems. In particular, they preclude net fluxes of such quan-
tities as electric current through a cross-sectica of the region of computation.
They also rule out all true boundary effects, which undoubtedly play a role in
real situations. It is desirable to state the ideas associated with inverse
cascades in a mathematics that corresponds to more realistic representations of
actual plasmas. )

The Strauss equations20 are a set of magnetohydrodynamic equations that
are close to those of incompressible two-dimensional magnetohydrodynamics, but
which include some important three-dimensional effects. They are far more tractable
than the full set of three-dimensional magnetohydrodynamic equations. What ap-
pears to the writer to be a more transparent derivation than Strauss's can be
given, ending with the same equations; the derivation is not simple, however.
Their most important feature is that of their near two-dimensionality: the
variable magnetic fields and velocity fields are perpendicular to the z-direction
(say), but the field variables are functions of all three spatial coordinates.

The variable part of the magnetic field is B and is expressed in terms of a vec-

tor potential A as B =V, x ézA. (The subscript "i" will always mean perpendi-

cular to éz.) The velocity field v is expressed in terms of a stream function

Uas v =V, x ézU. There is a constant, uniform dc magnetic field in the z

diroction, of magnitude BO >> Igl. The vorticity w and the current density Q are

in the z direction and are given by V12U = - and V12A = =j, in terms of A and U,
The Strauss equation520 are, in a familiar set of dimensionless variables

in which flow velocities are messured in units of the Alfvén speed,

JA 2, _ U
TR VA - uv,"A = By 5% (1)
w 2 )
p(-ﬁ- + Z.Vlm) -BV,d-pW, w = BO 5-3_1- (2)
The uniform dimensionless mass density p can be consistently set equal to unity.

1

The quantities U and v-l are essentially the magnetic and mechanical Reymolds

numbers, respectively.




Except for the terms on the right hand sides of Eqs. (1) and (2) and
the z-dependences, Eqs. (1) and (2) are identical with the equations of two-

dimensional incompressible magnetohydrodynamics,10'12

a system which is now
gecting to be rather well understood. Many interesting questions can be asked
of Eqs. (1) and (2). For example, the question of possible stability thresholds
for quiescent, slowly~decaying equilibria as u and v decrease towards zero is

an analogue of the question of the stability of hydrodynamic pipe flow or Couette
flow as the Reynolds number increases. Computational studies of Egs. (1) and (2)

21,22,23,24 in connection with

have been initiated by Carreras, Hicks and others
tokamak confinement.

The following considerations are intended to facili' ate this enterprise
by sharpening the mathematical framework in w.ich the interpretation of a major
disruption as an inverse magn=tic cascade may be numerically tested. In a paper
published in 1977, we put forward the suggestiole that the inverse cascade of
magnetic helicity might be responsible for major tokamak disruptions, and a test
of this hypothesis seems now to be within resch. Related considerations are
discussed in a forthcoming paper by Tetreault.

All inverse cascade computations to date have been motivated by con-
sidering first a model provlem in which the non-dissipative dynamical equations

have t<en expanded in a set of orthogonal functions.3’13

The expansion is then
truncated at & large but finite number of terms. Statistical mechanical proce-
dures are then performed in the phase space defined by the expansion coefficients.
Somewhat surprisingly, absolute equilibrium canonical ensembles (Gibbs distribu-
tions) have proved to be accurate predictors of time averages of phase functions
of the expansion coefficients. Considering the limiting behavior, as the number
of expansion coefficients becomes infinite, highlights any tendencies which may
exist for some invariant to migrate to long wavelengths.

The Gibbs distributions are constructed from those non-dissipative
invariants which remain invariant after the truncation: i.e., are "rugged". For
the Strauss equations there are apparently three such rugged invariants. They

are the energy E, the "cross helicity" H,» and the magnetic helicity Hm:

E = frardedz [B° + v°) (3)
H, = frdrdfdz wA (L)
o = Bo/rdrdédz A. (5)

The integrations are over the three dimensional region 0 < 8 < 27, 0 < r < a,



0<z< Lz’ where periodicity in z with period Lz is assumed. Free-slip boundary
conditions g-ér =0, §-€r = 0 are assumed at r = a, the wall of the rigid cylinder.
For added realism (but added complexity), we might add the "no slip" boundary
conditions on the tangential components: (V, x B) x ér =0 and v x ér = 0. These
are superflucus, hcwever, for the model problem at hand, and greatly complicate
the mathematics,

Usually, only quadratic invariants are easily proved to be "rugged",

and this can be achieved by the somewhat formal device of treating B, itself as a

phase space coordinate whose equation of motion just happens to be dgoldt = 0.
B, itself is then a rugged invariant, and all the terms in Egs. (1) and (2) as
well as the expressions (3)=(5) can be considered as quadratic. The ensemble
chosen can be chosen to be sharp in BO: i.e., microcanonical in BO but canonical
in the other invarieants.

A and U are expanded in the complete orthonormal set of eigenfunctions
26

of the Laplacian,

A =
nmq

(6)

where kn = 2nn/Lz, m and n are integers, and Ynmqa is the gqth zero of Jm(x).

Cnqum(Ynmqr)exp(lmB + 1knz),

The normalization constant Cnmq is
- 2,-1/2
Cnmq = (nL,a%) /Jm+l(Ynmqa). (1)
\ 2 _ .2 2 2 _ L2 2 _ .2
If we define Anmq = Ynmq + kn s V gnmq = Elnqunmq’ and V, Anmq Ynqunmq' The
A are eigenfunctions of both V,” and v=.
nmg
We may write the infinite sums
u= n%q nmnqAnmq (8)
A= I Somgtumg (9)
and
_ 2 2 2
E = Eq Yamo® 1oamg!” * IMppgl”) (10)
_ 2 * complex
M, = ngq Ynmqgnmqnnmq M (conjugate) (11)
1/2 & £
Hm=230(-ﬂ’1-) g 99g - 4y 290g (12)
4 q YOOq 1 YOOq

where for economy of notation, A = EBO(N/LZ) .

finite sets of terms once the truncation is performed.

1/2

The sums are over large but

Also to be truncated is

the set of ordinary first-order differential equations for dEnmq/dt and dnnmq/dt
that result when Egqs. (8) and (9) are inserted in Egs. (1) and (2).



The Gibbs ensemble which is appropriate to the case of no initial cor-

relation between ¥ and B is the multivariate probability distribution

Deq. = const. x exp {-aE - BHm} . (13)

with reciprocal temperatures a'l, B-l chosen to match desired ensemble expecta-
tions <E>, <Hm>.

Inserting Eqs. (10) and (12) into (13), the modal expectations are

. 2 2
readily calculated. First <gnmq> = <nnmq> =0, m +n #0, and
2 2 2 2 ?
> = =
<|€nmq| <|nnmql > N ) s, m +n # o . (lh)
Also Ynmq
__BA 1
<§OOq> T T 2a .3 (15)
00q
2. _ 1
YOOq
¢ and B are determined as the roots of
2.2
<E> = z i + I L + .ﬂ_ , (17)
nmg o, qla hazYu
n°+me40 00q
- <H > = - AEQ L - (18)
‘m 2a q & ’
Yo0q

which keep all the <|gnmq|2> and <|”nmq|2> positive.

If <E> and <Hm> are held fixed and the number of nmq modes is allowed
to increase without limi., it is easy to show that a + «, |B| + ® with |a/B| a
finite ratio. The sum in Eq. (18) is convergent as the maximum g + . Except
for the excess energy distributed in infinitessimal increments over the m?'i-n2 #0
modes, the fl:.id excitations freeze into the 00q magnetic modes. The vector

potential <A> approaches a function

b> ok “Co0q” Aoog
I (Yan T)
__BA 2,-1/2 ® o' Yoog
T T 2a (ana ) qél 3 : ’ (19)

Yo0q”"1{ Yooq® ,
8. universal function whose defining expression is manifestly convergent. For
all m2 + n2 # 0,
2
<lg__ |

_& +0

<€ >°

00q

as the number of terms approaches infinity.
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This behavior is slightly different from the corresponding inverse cas-~
cade behaviors found in previously examined cases, insofar as the helicity does
not condense into the 00l mode alone but into the rapidly converging series de-

fined by Eg. (19). The state (19) is in fact a uniform current demnsity state,

with <A> varying proportionately to r2. Nevertheless, the earmarks are there,
and to anyone familiar with the previous history of the theory of inverse cas-
cades, provide a basis for conjecturing that in the presence of dissipation and
forcing, there would be an inverse cascade of Hm to long wavelengths, headed
for the state defined by Eq. (19).

The uniform-current state (19) has the additicnal significance of being

either the state of minimum energy for given helicity, or the state of maximal

helicity for given energy. This can readily be seen from the Euler equation for
the variational problem of minimizing E subject to a fixed value of Hm: VEA =

a constant. For the dissipative initial value problem, it has been previously
demonstrated that under many circumstances, the directly cascadable invariants
will "selectively decay" relative to the inversely cascadable ones, and their
ratios will approach their theoretical lower bounds for large times.9’27 For
the Strauss equations, it appears that this uniform current state is the

n28 or force-free

"selectively decayed" state, analogous to the "Taylor state
state of the full set of magnetohydrodynamic equations.

If the more realistic '"no slip" boundary conditions are invoked, re-
quiring j = 0 at r = a, the uniform current state is not attainable. At the
least, a sharp current gradient must develop somewhere across the cross-section
of the cylinder as the selective decay progresses, perhaps in the form of a
boundary layer near r = a. (Something similar was seen in a recent selective

29)

decay calculation inside a compact toroid.‘ This current gradient, which

necessarily exists at the edge of a current-carrying plasma bounded by a con-
ducting wall, looms as a rather universal and difficult-to-avoid source of
"tearing mode turbulence."

This gradient in the current near the walls is one among many poter-
tial sources for the helicity which might be inversely cascaded. There is
probably no single mechanism for supplying small-scale helicity. A second
likely possibility is current filggggtationlg that may develop along local hot

spots in the magnetofluid; the resistivity falls off with increasing temperature,



10

and way thus channel the current alorg hot tubes of force, resulting in still
higher local heating. There is probably no single mechanism for supplying
small-scale helicivy, which basically results any time current flows along a
field line in the presence of resistivity. Arguing in favor of particular
drivers or sources may prove as fruitless an activity as the generation of
debates that has surrounded linear instability theory. It appears imperative
to produce major disruptions in the presence of as many parameter variations
as possible, to begin to acquire discrimination among the variety of sources

that may be operativea.



III. A POSSIBLE COMPUTATIONAL AGENDA

Numerical demonstration of the possible inverse cascade properties of
Strauss's equations will be facilitated by taking advantage of earlier experience
and conceptualizations gained in studying inverse cascades, and by resistance to
letting the conceptual framework be circumscribed by lineer stability analysis.
The first limitatlon that will have to be confronted will be the limitation on
the Reynolds numbers v-l, u-l. A currently popular rule of thumb for fluid com-
putations is that for every unit of Revynolds number, one grid point (or finite
element, or expansion coefficient) is required in each spatial dimension. Thus
a three-=-dimensional simulation at a Reynolds number of 30 requires about (30)3
grid points to resolve the smallest spatial scales. This limitation might be
viclated by & factor of two, but probably not by an order of magnitude. At
present the smallest y4 and v that are feasible to compute with are between about
1072 and 107> for two dimensions and 10°% to 10”2 for three. The desired physical
values, for real experiments,are likely to be considerably smaller than thet
(particularly u). ’'There is no simple way around this difficulty.

Progress can be made in perhaps only one of two ways. (1) It may be
attempted to escape the connection between the aforementioned necessary
spatial resolution and wave number requirements by introducirg an artificial
enhanced dissipation which only becomes effective at high wave numbers%Y The
hope is that small scale dissipation only provides a sink anyway, and that the
large scale dynamics will become independent of the details of the sink. (2) Al-
ter-atively, one may settle for the qualitative demonstration of the physics and
extrapolate crudely to the behavior at the very high Reynolds numbers. In the
former choice, the ultimate validation can only be a comparison with the results
of very high-resolution codes in which no anomalous dissipation is introduced.

In the second choice, the ultimate recourse is most probably to experiments.

The most single important possibility, as far as major disruptions are
concerned, has to do with the possible existence of thresholds in Reynolds num-
bers. Such thresholds, at sometimes surprisingly low values, have characterized;7
the three-dimensional computations on the dynamo problem: above certain critical

Reynolds numbers, a given stirring mechanism will initiate an inverse cascade,

11
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otherwise it will notl! Of particular interest to tokamaks is the possibility
that because of the drop of resistivity with increasing temperature, critical
Lundquist numbers (Alfvén speed x length scale/magnetic diffusivity) or magnetic
Reynolds numbers (flow speed x length scale/magnetic diffusivity) will be crossed
as the magnetofluid heats up, and an inverse cascade will start dramatically.

A spectral-method numerical solution in search of inverse heliﬁity
cascades might proceed as follows, for Eqs. (1) and (2). Pick M, V"~V 1/50 or
so, with a resolution of the order of, say, 100 in the radial and azimuthal
coordinates and perhaps 15 to 20 in the z coordirate. (It is unknown as to how
rapidly smell scales in z will multiply themselves, but if they develop as
readily as the small scales in 6 and r, the Strauss equations probably are not
useful, anyway.) There is no reason to believe less spatial resolution is re-
quired in @ than in r. Invariance of the results to increased resolution in 8,
r, and 2z is a necessary check on their accuracy. An initial current profile whi-h
is thought to be close to experimental reality should be chosen and an external
forcing term (probably from a random number generator) should be permitted to
drive the magnetofluid at the small scales, either locally or randomly in space
as well., This can be most effectively accomplished by adding a small random
term to the right hand sides of Egs. (1) aand (2), in the manner of Lilly%aor
Fyfe gg_g;}z

The purpose of this first exercise would be simply to see if an inverse
cascade with the features of a major disruption can be induced, either by lowering
the dissipation coefficients or raising the strength of the random forcing. Once
such an event has been shown to exist, an infinite variety of refinements of the
calculation, such as eliminating the random forcing in favor of a resistivity
which depends upon the local temperature T, are imaginable. T, for example,

might be convected and gzrow locally due to Ohmic dissipation:
9 2 2
(g + v+¥) T=KV,"T + nj%,

where 1 is a heating rate, and K is a thermal conductivity.
Finally, the most important guestion connected with major disruptions
is not so much can they occur as what can be done about them. If their inter-

pretation as an inverse cascade of helicity is correct, then at a formal level,
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the remedy is apparent: feed the magnetofluid some nelicity of opposite sign.
This means in effect inducing in the plasma some current flowing in the opposite
direction from the main toroidal current. Where and how to do this seems like

a delicate matter. Not much help is to be expected from attempts at suppression
by static external helical windings, which supply a vacuum helicity at a parti-
cular n,m mode, but do little to the bulk distribution over modes that provides
the basis for an inverse helicity cascade.

The clear-cut demonstration of an example of inverse cascade behavior
for the Strauss equations would undoubtedly stimulate many additional refinements
and insights that are now hard to foresee. The time is overdue, also, when the
plasma simulation community should begin to seek a conceptual framework for its
computations in their hydrodynamic antecedents, and cease to expect that linear
stability analyses will provide adequate insight into processes in which non-

linear transfer is the dominant effect.
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FIGURE CAPTIONS

Fig. 1. Magnetic poteantial spectrum as a function of wave number for successive
times, in twc dimensions. Magnetic fluctuations and kinetic energy are injected
at the wave number indicated by the arrow, and their transfer is approximated by

an eddy-damped "closure"” calculation. {Taken from.Pouquet.lé)

Fig. 2. Magnetic modal energies, averaged over angle, as function of Igl, for
a direct solution of the two-dimensional magnetohydrodynamic equations in two
dimensions (taken from Fyfe et al.lz). Magnetic fluctuations are randomly
injected in the band between the arrows, and the spectrum is allacwed to fill

up. Initially, it is empty.

Fig. 3. Omni-direction magnetic energy spectrum for the three-dimensional case

17).

(taken from Meneguzzi et al. A small seed magnetic field is amplified by
a driven velocity field which contains mechanical helicity, fg'g d2x. The
spectra are labeled by the appropriate values of the time. This is the most

clear-cut computation of "dynamo" action to date.
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