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ABSTRACT 

MASTER 

Inverse cascades of magnetic q'uantities for turbulent incompressible 

magnetohycirodynamics are reviewed, for two and three dimensions. The theory is 

extended to the Strauss equations, a description intermediate between two and 

three dimensions appropriate to tokamak magnetofluids. Consideration of the 

absolute equilibrium Gibbs ensemble for the system leads to a prediction of an 

inverse cascade of magnetic helicity, which m8\Y manifest itself as a major 

disrupti.on. An agenda for computational investigation of this conjecture is 

* P:r-esented at the US-Japan Wo:::'kshop on 3D !.ffiD Studies for :Loroidal Devices, 
Oak Ridge National Laboratory, October 19, 1981 • 
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I. INTHODUCTION 

A. Background 

Over the last fifteen years, the term "inverse cascade" has been ap

plied to a class of turbulent processes in which the small spatial scales 

~ tli.gh wavenumbers) feed some quantity, by nonlinear processes, to the large 

Jpatial scales (low wavenumbers). A variety of quantities can be inversely 

cascaded, depending upon the medium and upon the geometry: the process can look 

,i.uite different in different cases. Inverse cascades have been most intensively 

studied in Navier-Stokes fluids and incompressible magnetofluids. Most progress 

has been numerical, and the accurate computation of an inverse cascade is a 

strenuous numerical challenge because of the high spatial resolution requir,ed. 

This needed high spatial resolution considerably rest~icts the range of allowable 

Reynolds numbers, and the implications of these restrictions have yet to be 

felt in the plasma simulation community, though the hydrodynanricists are pain

fully aware of them. 

The idea of an inverse cascade first appeared in ~onnection with flows 

in two_dimensional1 ,2,3,4,5 Navier-Stokes fluids, then in magnetofluids, first 

in three dimensions6,7,8,9 and then in two. lO ,11,12 Most of' the work has assumed 

the simplest and most highly idealized boundary conditions: rectangular periodic 

ones. But now, possible relevance to the Ifmagnetic dynamo" and to magnetic 

fusion confinement is exerting pressure for computations with fewer idealiza

ti{;ns and more realism. Computations are crucial for demonstrating most of the 

theoretical consequences. Analytical indicators can be used to anticipate the 

existence of inverse cascades, but accurate prediction of any of their details 

seems inherently to require sophisticated numerics. No one has had much success 

proceeding solely with pencil and paper. The intention here is to clarify the 

implications of certain classes of possible computations. 

Th h · d 1 .. d' t . all . 1 3,13 _ e mec an~sm un er y~ng an ~nverse casca. e ~s essen ~ y s~p e. 

Two things seem to be necessary: (1) a dissipation which only becomes effective 

at small spatial scales, such as viscous or Ohmic cU.ssipation; and (2) two or 

~ore non-dissipative integral invariants of the motion which are representable 

~s sums which emphasize differently the large and small scales. 

j 
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Take an example: two-dimensional Navier-Stokes flow at high Reynolds 

numbers (the same mathematics does as well for electrostatic guiding center 

plasmas). The two non-dissipative invariants, expressed in te~~ of the Fourier 

coefficients of the velocity field !(~,t), are the energy per unit mass E and 

the mean-square vorticity or "enstrophy" Q: 

The non-dissipative terms in the equations of motion are the nonlinear ones, 

and if they transfer excitations to the ~igh I!I part of the spectrum (as they 

sl.:Lrely must), the only wa::! the simultaneous constancy of both E and Q can be 

preserved is for there to be an accompanying transfer to low 1!1. The additional 

constant of the non-dissipative motion 0 (which is not conserved in three di

mensions) demands that the non-dissipative (i.e., non-linear) terms in the 

Navier-Stokes equation must transfer excitations in ~ directions in wavenumber 

space, if there is any transfer at all. The paths in ~ space by which the transfer 

occurs are a secondary issue, but there is nothing simple about them. 

Subtleties arise when one begins to ask sharper questions, such as 

which quantity gets transferred in which direction and how fast. These questions 

have been earnestly addreEsed in the literature and do not lead to short, graphic 

answers, only to long, contingent ones. Relatively simple and persuasive answers 

can be given for the quasi-steady state, when a source of excitations, band

limited in wavenumber space, is regarded as injecting the excitations at a sta

tistically steady rate and attention is directed toward the spectra and the 

transfer rates of the cascaded quantities. The word "source" can mean lots of 

things, from an externally-applied forcing field (such as an electric field or 

current field, in magneto-hydrodynamics) to some microscopic instability which 

might be present. 

Computationally, one often works initial value problems starting from 

smooth initial conditions, and in that case, it may be usefUl to identify a 

particular unstable normal mode as associated with the onset of the turbulent 

fluctuations. In the laboratory one usually does not work an initial value 

problem starting from smooth initial conditions; rather, unstable systems are 

often created only with some level of excitations already in place. It may then 

be a less interesting q:lestion as to which "mode" is the "most unstable" one, 
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because the fUlly developed and observed state mbJ bear little relation to the 

kind of smooth profiles on which any kind of stability calculations can be done. 

A hydrodynamic analogy is pipe flow far above the critical Reynolds number: 

there is hardly even an academic relation between the details of the flow and 

any stability calculation that can be done. Particularly in plasma confinement 

experiments, there may be many s~multaneous sources of excitation: a gracient 

in virtually any mean field variable (pressure, magnetic field, electric current, 

flow velocity, density, temperature) is potentially a source of excitations. 

Many sources may act simultaneously. They may interfere with or reinforce each 

other. 

What happens to the excitations once they are launched on their journey 

through ~-space may be the more interesting and the more physically significant 

question. There is a clear difference between turbulent processes that transfer 

their disturbances to small rather than large scales from the point of view of 

thermonuclear confinement. In the former case, the worst that can happen is an 

enhanced transport, a disadvantage which may well be offset by en enhanced heating. 

(A tokamak which had no "directly cascaded" turbulence of this kind might not heat 

at all!) Transfer toward large scales can clearly be more serious: macroscopic 

bulk deformations can redistribute and disrupt the plasma. variables and perhaps 

terminate the confinement. Disruptions in tokamaks have some of the flavor of 

what one might expect from an inverse cascade, though experiments with highly 

resolved enough diagnostics to study the small scales of what happens in a major 

li3ruption appear not to have been carried out. (A respectable beginning on the 

pr:',olem ... ras made some time ago by Hutchinson14 and Morton. l5 ) For the near-term 

fut~e, connections between tokamak disruptions and possible inverse cascades are 

likely to continue to be primarily a numerical subject. 
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B. Numerical Examples 

We briefly remark upon three examples of attempted computations of 

inverse magnetic cascades. The quantities expected to be inversely cascaded 

are mean square vector potential in two dimensions and magnetic helicity in 

three. 

Figure 1, due to Pouquet,16 displays the results of a closure calcula

tion of an inversely cascading magnetic vector potential spectrum in two dimen

sions. The mechanical and magnetic Reynolds numbers are of the order of 4500. 
The excitations are injected at a wave number indicated by an arrow, and every

thing at lower wave numbers is the result of back transfer in wave number space. 

The computation is not a direct solution of the dYnamical equations themselves, 

but rather a statistical, eddy-damped "closure" approxime.ti.on to them which per-

mi ts higher values of the Reynolds numbers th8ll a direct computation could possibly 

permit with present-day comp~ters. 

Figure 2, due to Fyfe et al.,12 shows a direct numerical solution of 

the two-dimensional magnetohydrodynamic equations, driven by a random magnetic 

forcing confined to the indicated wavenumber band. All the points below k2 = 55 
correspond to inverse magnetic transfer to long wavelengths. This, incidentally, 

is a calculation in which spatial resolution was inadequate to the Reynolds number 

chosen, and as a consequence there is no "dissipation range", or region of pre

cipitous fall-off at increasing k, apparent at the upper end. 

Figure 3 is taken from Meneguzzi et al.,17 and illustrates the results 

of a direct computation from the three-dimensional incompressible magnetohydrQ

dYnamic equations, again with a random forCing, but this time with a helical, 

mechanical one. A weak "seed" magnetic field amplifies with time as the injected 

kinetic energy converts into magnetic energy through dynamo action. The back 

transfer of magnetic helicity is apparent. 

Additional direct inverse cascade computations which may be mentioned 

are those of Lilly18 and F,yfe et al.,12 for the two-dimensional Navier Stokes 

case; see also Pouquet et al.19 for the corresponding closure computation. Pouquet 

and Patterson7 have displayed three-dimensional magnetohydrodynamic direct compu

tations. POllquet et al. 8 have given three-dimensional inverse cascade closure 

computa.tions for incompressible magnetohydrodynamics. 

All the computations cited assume rectangular periodic boundary conditions 

with no net flux of any quantity through any cross section of the system. 



II. THE STRAUSS EQUATIONS; ABSOLUTE EQUILIBRIUM ENSEMBLE THEORY 

Rectangular periodic bQUDdary conditions, which characterize most of 

the computational efforts to study inverse cascades, idealize awa:y several key 

features of real systems. In particular, they preclude net fluxes of such quan

tities as electric current through a cross-sectica of the region of computation. 

They also rule out all true boundary effects, which undoubtedly play a role in 

real. situations. It. is desirable to state the ideas a,ssociated with inverse 

cascades in a mathematics that corresponds to more realistic representations of 

act ual plasmas. 

The Strauss equations20 are a se't of magnetohydrodynamic equations that 

are close to those of incompressible two-dimensional magnetohydrodynamics, but 

which include some important three-dimensional effects. They are far more tractable 

than the full set of three-dimensional magnetohydrodynamic equations. What ap

pears to the writer to be a more transparent derj,vation than Strauss's can be 

given, ending with the same equations, the derivation is not simple, however. 

Their most important feature is that of their near two-dimensionality: the 

variable magnetic fields and velocity fields are perpendicular to the z-direction 

(say), but the field variables are functions of all three spatial coordinates. 

The variable part of the magnetic field is B and, is expressed in teI~ of a vec

tor potential A as ~ = 'iJ.l x @zA. (The subscript "~,, will always mean perpendi

cular to @ .) 'l'he velocity field v is expressed in terms of a stream function z 
U as ! = 'iJ~ x @ U. There is a constant, uniform dc magnetic field in the z z 
dil'ction, of magnitude BO »I~I. The vorticity w and the current density j are 

2 - 2 -
in the z direction and are given by 'iJ~ U = -w and 'iJ~ A = -j, in terms of A and U. 

The Strauss equations20 are, in a familiar set of dimensionless variables 

in which flow velocities are measured in units of the Alfven speed, 

= B .2.£ o az (1) 

(2) 

The uniform dimensionless mass density p can be consistently set equal to unity. 
-1 -1 The quantities ~ and v are essentially the magnetic and mechanical Reynolds 

numbers, respectively. 
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Except for the terms on the right hand sides of Eqs. (1) and (2) and 

the z-dependences, Eqs. (1) and (2) are identical with the equations of two

dimensional incompressible magnetOhydrOdynamics,lO-12 a system which is now 

gecting to be rather well understood. Many interesting questions can be asked 

of Eqs. (1) and (2). For example, the question of possible stability thresholds 

for quiescent, slowly-decaying equilibria as ~ and V decrease towards zero is 

an analogue of the question of the stability of hydrodynamic pipe flow or Couette 

flow as the Reynolds number increases. Computational studies of Eqs. (1) and (2) 

have been initiated by Carreras, Hicks and others21 ,22,23,24 in connection with 

tokamak confinement. 

The following considerations are intended to facili' 'lte this enterprise 

by sha.rpening the mathematical framework in w .. ich the interpretation of a major 

disruption as an inverse magm~tic cascade may be numerically tested. In a paper 

published in 1977, ~e put forward the suggestionl2 that the inverse cascade of 

magnetic helicity might be responsible for major tokamak disruptions, and a test 

of this hypothesis seems now to be within rt·!'~h. Related considerations are 
25 

discussed in a forthcoming paper by Tetreault. 

All inverse cascade computations to date have been motivated by con

sidering first a model problem in which the non-dissipative dynamical equations 

have b~en expanded in a set of orthogonal functions. 3 ,13 The expansion is then 

truncated at a large but finite number of terms. Statistical mechanical proce

dures are then performed in the phase space defined by the expansion coefficients. 

Somewhat surprisingly, absolute equilibrium canonical ensembles (Gibbs distribu

tions) have proved to be accurate predictors of time averages of phase functions 

of the expansion coefficients. Considering the limiting behavior, as the number 

of expansion coefficients becomes infinit~ highlights any tendencies which may 

exist for some invariant to migrate to long wavelengths. 

The Gibbs distributions are constructed from those non-dissipative 

invariants which remain invariant after the truncation: Le., are "rugged". For 

the Strauss equations there are apparently three such rugged invariants. They 

are the energy E, the "cross helicity" H , and the magnetic helicity H : 
c m 

E = frdrd8dz [~2 + r2] (3) 

H = frdrd8dz wA (4) c 
Hm :: BOfrdrd8dz A. (5) 

The integTations are over the three dimensional region 0 < 8 < 2rr, 0 < r < a, 
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o < z < L , where periodicity in z with period L is assumed. Free-slip boundary - z z 
conditions v·a = 0, B·a = 0 are assumed at r = a, the wall of the rigid cylinder • ... r ... r 
For added realism (but added complexity), we mighi:; add the "no slip" boundary 

conditions on the tangential components: (V. x B) x a = 0 and v x a = O. These 
..'" r ... r 

are superfluous, however, for the model problem at hand, and greatly complicate 

the mathematics. 

Usually, only quadratic invariants are easily proved to be "rugged", 

and this can be achieved by the somewhat formal device of treating BO itself as a 

phase space coordinate whose equation of motion just happens to be dBo/dt = O. 

BO itself is then a rugged invariant, and all the terms in Eqs. (1) and (2) as 

well as the expressions (3)-(5) can be considered as quadratic. The ensemble 

chosen can be chosen to be sharp in BO: Le., microcanonical in BO but canonical 

in the other invariants. 

A and U are expanded in the complete orthonormal set of eigenfunctions 

f th L 1 . 26 o e ap ac~an, 

A = C J (y r)exp(im8 + ik z), nmq nmq m nmq n (6) 

where k = 2~n/L , m and n are integers, and y a is the qth zero of J (x). n z nmq m 
The normalization constant C is nmq 

C = (~L a2)-1/2/J +l(Y a). (7) n.mq z m nmq 

If we define A2 = y2 + k 2 V2A = _A2 A 
runq nmq n' 2nmq 2 nmq nmq' 

A are eigenfunctions of both 'iJ~ and V • nmq 

and 'iJ 2A = _y2 A • 
~ nmq nmq nmq The 

We may write the infinite sums 

U = E Tl A nmq nmq nmq 
( 8) 

A = E E; A nmq nmq nmq (9) 
and 

E = ~q y!mq( I E;nmq 12 + ITlnmq12) (10) 

2H = c 
E 2 * + ( complex ) 

nmq y nmqE;nmqTlnmq conjugate (11) 

1/2 E; E; 
H = 2B (..!...) E.:QQs=1\E~ ~ (12) 

m o Lz q YOOq q YOOq 

where for economy of notation, 1\ = 2Bo(~/Lz)1/2. The sums are over large but 

finite sets of terms once the truncation is performed. Also to be truncated is 

the set of ordinary first-order differential equations for d~ /dt and dTl /dt nmq nmq 
that result when Eqs. (8) and (9) are inserted in Eqs. (1) and (2). 
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The Gibbs ensemble which is appropriate to the case of no initial cor

relation between! and ~ is the multivariate probability distribution 

D = const. x exp {-aE - aHm} , eq. (13) 

with reciprocal tempp.ratures a-l , a-1 chosen to match desired ensemble expecta

tions <E>, <H >. 
m 

Inserting Eqs. (10) and (12) into (13), t.he modal expectations are 
2 2 readily calculated. First <; > = <n > = 0, m + n ; 0, and nmq nmq 

<I; 12> = <In 12> = ~ ,m2 + n2 ; 0 (14) 
nmq nmq ay 

Also nmq 

(15) 

(16) 

~ and a are determined as the roots of 

<E"> = 1: .i + 1: {l + a
2 

fI. 
2 

} nmq (1, qa 24 
n2+m2;0 4a YOOq 

, 

and 
fl.

28 1 
<Hm> = - 2a ~-r 

YOOq 

(18) 

which keep all the <I; 12> and <In 12> positive. nmq nmq 
If <E> and <H > are held fixed and the number of nmq modes is allowed 

m 
to increase without limi~, it is easy to show that a ~ 00, lsi ~ 00 with la/Sl a 

finite ratio. The sum in Eq. (18) is convergent as the maximum q ~ 00. Except 

for the excess energy distributed in infinitessimal increments over the m
2 

+ n2 ; 0 

modes, the fl.,~id exci tat5.ons freeze into the OOq magnetic modes. The vector 

potential <A> approaches a function 
00 

<A> ~ 1: <; > A 
q=l OOq OOq 

JO(YOOqr) 
3 

YOOqJ1(YOOqa) 
, 

a universal function whose defining expression is manifestly convergent. For 

all m2 + n2 ; 0, 

<I; 12> 
nmq ~ 0 

<; >2 
OOq 

as the number of terms approaches infinity. 
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This behavior is slightly different from the corresponding inverse cas

cade behaviors found in previously examined cases, insofar as the helicity does 

not condense into the 001 mode alone but 

fined by Eq. (19). The state (19) is in 

with <A> varying proportionately to r2. 

into the rapidly converging series de

fact a ~iform current density state, 

Nevertheless, the earmarks are there, 

and to anyone familiar with the previous history of the theory of inverse cas

cades, provide a basis for conjecturing that in the presence of dissipation and 

forcing, there would be an inverse cascade of H to long wavelengths, headed m 
for the state defined by Eq. (19). 

The uniform-current state (19) has the additional significance of being 

either the state of minimum energy for given helicity, or the state of maximal 

helicity for given energy. This can readily be seen from the Euler equation for 
2 the variational problem of minimizing E subject to a fixed value of H : V~A = 

m 
a constant. For the dissipative initial value problem, it has been previously 

demonstrated that under many circumstances, the directly cascadable invariants 

will "selec:tively decay" relative to the inversely cascadable ones, and their 

ratios will approach their theoretical lower bounds for large times. 9 ,27 FI;:>r 

the Strauss equations, it appears that this uniform current state i! the 
28 "selectively decayed" state, analogous to the "Taylor state" or force-free 

state of the full set of magnetohydrodynamic equations. 

If the more realistic "no slip" boundary conditions are invoked, re

quiring j = 0 at r = a, the 1lniform current state is not attainable. At the 

least, a sharp current gradient must develop soruewhere across the cross-section 

of the cylinder as the selective decay progresses, perhaps in the form of a 

boundary layer near ,r = a. (Something similar was seen in a recent selective 

decay calculation inside a compact toroid. 29 ) This current gradient, which 

necessarily exists at the edge of a current-carrying plasma bounded by a con

ducting wall, looms as a rather universal and difficult-to-avoid source of 

"tearing mode turbulence." 

This gradient in the current near the walls is one among many poter~ 

tial sources for the helicity which might be inversely cascaded. There is 

probably no single mechanism for supplying small-scale helicity. A second 

likely possibility is current filamentation12 that may develop along local hot 

spots in the magnetofluid; the reSistivity falls off with increasing temperature, 
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and may thus channel the current alorg hot tubes of force, resulting in still 

higher local heating. There is probably no single mechanism for supplying 

small-scale helicii;y, which basically results any time current flows along a 

field line in the presence of resistivity. Arguing in favor of particular 

drivers or sources may prove as fruitless an activity as the generation of 

debates that has surrounded linear instability theory. It appears imperative 

to produce major disruptions in the presence of as many pal:"ameter variations 

as possible, to begin to acquire discrimination among the variety of sources 

that may be operative. 



III. A POSSIBLE COMPUTATIONAL AGENDA 

Numerical demonstration of the possible inverse cascade properties of 

Strauss's equations will be facilitated by taking advantage of earlier experience 

and conceptualizations gained in studying inverse cascades, and by resistance to 

letting the conceptual framework be circumscribed by lineex stability analysis. 

The first limitatIon that will have to be confron-ted will be the limitation on 
-1 -1 the Reynolds numbers \) ,l.l • A. currently popuJ.ar rule of thumb for fluid com-

putations is that for every unit of RE"Ynolds number', one grid point (or finite 

element, or expansion coefficient) is required in each spatial dimension. Thus 

a three-dimensional simulation at a Reynolds number of 30 requires about (30)3 

grid points to resolve the smallest spatial scales. This limitation might be 

violated by a factor of two, but probably not by an order of magnitude. At 

present the smallest l.l and \) that are feasible to compute with are between about 

10-2 and 10-3 for two dimensions and 10 •. 1 to 10-2 for three. The desired physical 

values, for real experiments,are likely to be considerably smaller than that 

(par'ticularly l.l). :L'here is no simple way around this difficulty. 

Progress can be made in perhaps only one of two ways. (1) It may be 

attempted to escape the connection. between the aforementione:l necessary 

spatial resolution and wave number requirements by introduciLg an artificial 

enhanced dissipation which only becomes effective at high wave numbers~7 Tne 

hope is that small scale dissipation only provides a sink anyway, and that the 

large scale dynamics will become independent of the details of the sink. (2) Al.

ter:,-ati vely, one may set.tle for the quali tati ve ,demonstration of the physics and 

extrapolate crudely to the behavior at the very high Rpynolds numbers. In the 

former choice, the ultimate validation can only be a comparison with the results 

of very high-resolution codes in which no anomalous dissipation is introduced. 

In the second choice, the ultimate recourse is most probably to experiments. 

The most single important possibility, as far as major disruptions are 

concerned, has to do with the possible existence of thresholds in Reynolds num,

bers. Such thresholds, at sometimes surprisingly low values, have characterizedl7 

the three-dimensional computations on the dynamo problem: above certain critical 

Reynolds numbers, a given stirring mechanism will initiate an inverse cascade, 

11 
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otherwise it will not~7 Of particular interest to tokamaks is the possibility 

that because of the drop of resistivity with increasing temperature, critical 

Lundquist numbers (Alfven speed x length scale/magnetic diffusivity) or magnetic 

Reynolds numbers (flow speed x length scale/magnetic diffusivity) will be crossed 

as the magnetofluid heats up, and an inverse cascade will start dramatically. 

A spectral-~ethod numerical solution in search of inverse hel:~ity 

cascades might proceed as follows, for Eqs. (1) and (2). Pick \.I, \} 'V 1/50 or 

so, with a resolution of the order of, say, 100 in the radial and azimuthal 

coordinates and perhaps 15 to 20 in the z coordinate. (It is unknown as to how 

rapidly small scales in z will multiply themselves, but if they develop as 

readily as the small scales in 8 and r, the Strauss equations probably a~e not 

useful, anyway.) There is no reason to believe less spatial resolution is re

quired in e than in r. Invariance of the results to increased resolution in a, 
r, and z is a necessary check on their accurai~y. An initial current profile whi·h 

is thought to be close to experimental reality should be chosen and an external 

forcing term (probably from a random number generator) sho~ld be permitted to 

drive the magnetofluid at the small scales, either locally or randomly in space 

as well. This can be most effectively accomplished by adding a smell random 

term to the right hand sides of Eqs. (1) and (2), in the manner of Lilly;80r 
12 

Fyfe II ale 

The purpose of this first exercise would be simply to see if an inverse 

cascade with the features of a major disruption can be induced, either by lowering 

the dissipation coefficients or raising the strength of the random forcing. Once 

such an event has been shown to exist, an infinite variety of refinements of the 

calculation, such as eliminating the random forcing in favor of a resistivity 

which depends upon the local temperature T, are imaginable. T, for example, 

might be convected and grow locally due to Ohmic dissipation: 

a 2 2 
(at + Y·~~) T = K~~ T + nj , 

where n is a heating rate, and K is a thermal conductivity. 

Finally, the most important question connected with major disruptions 

is not so much can they occur as what can be done about them. If their inter

pretation as an inverse cascade of helicity is correct, then at a formal level, 
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the remedy is apparent: feed the magnetofl~1d some helicity of opposite sign. 

This means in effect inducing in the plasma some current floving in the opposite 

direction from the main toroidal current. Where and how to do this seems like 

a delicate matter. Not much help is to be expected from attempts at suppression 

by static external helical windings, which supply a vacuum helicity at a parti

cular n,m mode, but do little to the bulk distribution over modes that provides 

the basis for an inverse helicity cascade. 

The clear-cut demonstration of an example of inverse cascade behavior 

for the strauss equations would undoubtedly stimulate many additional refinements 

and insights that are now hard to foresee. The time is overdue, also, when the 

plasma simulation community should begin to seek a conceptual framework for its 

computations in their hydrodynamic antecedents, and cease to expect that linear 

stability analyses will provide adequate insight into processes in which non

linear transfer is the dominant effect. 
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FIGURE CAPTIONS 

Fig. 1. Magnetic potential spectrum as a function of wave number for successive 

times, in two dimensions. Magnetic ~luctuations and kl~etic energy are injected 

at the wave number indicated by the arrow, and their transfer is approximated by 
16 an eddy-damped "closure" calculation. (Taken from. Pouquet. ) 

Fig. 2. Magnetic modal energies, averaged over angle, as function of I~I, for 

a direct solution of the two-dimensional magnetohydrodynamic equations in two 

dimensions (taken from Fyre et al. 12 ). t4agnetic fluctuations are randomly 

injected in the band between the arrows, and the spectrum is all~wed to fill 

up. Initially, it is empty. 

Fig. 3. Omni-direction magnetic energy spectrum for the three-dimensional case 

(taken from !.1eneguzzi et al. 17 ). A small seed l::.agnetic field is amplified by 
2 

a driven velocity field which contains mechanical helicity, fy'~ d x. The 

spectra are labeled by the appropriate values of the time. This is the most 

clear-cut computation of "dynamo" action to date. 

14 
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