
THEORYOFHYDROMAGNETICTURBULENCE

David Montgomery

The College of William and Mary

Williamsburg, Virginia 23.185 U. S. A.

Abstract

The present state of MIIDturbulence theory as a possible solar wind

research tool is surveyed. The theory is statistical, and does not makestate-

ments about individual events. It is unreasonable to expect ever to be able to

"explain" individual events with turbulence theory. The ensembles considered

typically have individual realizations which differ qualitatively, unlike equi-

librium statistical mechanics. Most of the theory deals with highly symmetric

situations ; most of these symmetries have yet to be tested in the solar wind.

The applicability of MHDitself to solar wind parameters is highly questionable;

yet it has no competitors, as a potentially comprehensive dynamical description.

The purposes of solar wind research require sharper articulation. If they are

to understand radial turbulent plasma flows from spheres, laboratory experiments

and numerical solution of equations of motion may be a cheap alternative to

spacecraft. If "real life" information is demanded, multiple spacecraft with

variable separation may be necessary to go further. The principal emphasis in

the theory so far has been on spectral behavior for spatial covariances in wave

number space. There is no respectable theory of these for highly anisotropic

situations. A rather slow development of theory acts as a brake on justifiable

measurement, at this point.
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I. INTRODUCTION

One question solar wind research may ultimately have to answer for

itself is whether it will resemble geography or dynamic meteorology more closely.

Geographymust concern itself withevents which are specific and in a very real

sense accidental. Its use of analytical mathematics is limited and may some-

times be simply decorative. Dynamicmeteorology proceeds from the assumption

that a largely complete mathematical description can be found and should be

pursued, even if the complexity of the differential equations and the incomplete-

ness of the boundary data guarantee that the program will be a long time coming
to completion (see, e.g., Pedlosky, 1979).

Muchof what happens in any individual rainstorm is extraordinarily

striking, but it cannot usefully be considered in the light of a detailed

mathematical theory. It will never happen in quite the sameway again. Austere

discipline is required to focus on those aspects of the weather which are at

least statistically reproducible, and therefore susceptible to a mathematical

theory.

Spacephysics has frequently taken the "event" as its unit of concern.

Such-and-such a set of fluctuating field signals were seen on such-and-such a

detector on such-and-such a day. Plausible hypotheses about what might have

been responsible for the signals are produced, and are buttressed by such mathe-

matics as lies ready to hand. The kind of boundary and initial data that would

be necessary to extract sharp conclusions from the mathematics are invariably

lacking, and the machinery for extracting the conclusions often also does not

exist. A rather subjective opinion is usually necessary at the end as to

whether or not the "event" has been satisfactorily "explained". This paradigm

is by now deeply ingrained, and is an unconscious ingredient in the evaluation

of manyof the papers, say, which one finds in Journal of Geophysical Research.

The subject is at a natural stage to begin to ask what the possibili-

ties are for making it into a mathematically tighter and more intellectually

crisp area of endeavor. It is equally natural to inquire into the range of

available models which have been pursued in comparable and more highly developed

continuous-media situations such as meteorology, say, or ocenography.

The purpose of the following material is a consideration of the ade-

quacy of the available solar-wind mathematical description to the task of
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providing a comprehensive dynamical description. If precedents from nearby

subjects are any guide, there would seemto be only one serious contender as

a model for what such a mathematical description might look like. That is
classical Navier-Stokes hydrodynamics, which is the basis for such theories as

there are for the dynamics of the earth's atmospheres and oceans. Someexposure

to hydrodynamic theory will be assumed--sufficient, at least, to take for

granted the unquestioned role hydrodynamics plays as theoretical research tool

in those subjects. The following pages are a survey of the present status of

magnetohydrodynamic(hereafter: MHD)turbulence theory and its adequacyas an

off-the-shelf research tool for describing solar wind measurements. The con-

clusions are not all rosy, and the analysis of the available mathematical

descriptions and techniques leads to the belief that they should only be applied

to solar wind data with extreme caution, and perhaps with a sense of h_nor.

In order of ascending complexity, the possible dynamical descriptions

for the solar-wind plasma are: (1) one-fluid magnetohydrodynamics(MHD);

(2) multi-species, charged-fluid hydrodynamics with assumedclosures for the

pressure tensors (equations of state); (3) the Vlasov description in terms of

particle distribution functions; (4) Vlasov equations modified by adding Fokker-

Planck collision terms on the right hand sides. Specialized models, such as

the Chew-Goldberger-Lowapproximation, which rather arbitrarily drops heat flow
along magnetic field lines, can be accommodatedin various niches in the above
list.

If the expected dynamics of the system were linear and non-turbulent,
at least the first three models could be taken seriously as contenders. The

controlled fusion (CTR) cormnunityhas done so, gambling on the hope that labora-

tory experimentalists will be able to produce confined plasmas whose dynamics

remain linear and at most weakly turbulent. But by anyone's definitions, the

solar wind's behavior is unmistakably turbulent and nonlinear. The fluctuating

magnetic fields, flow velocities, and electric fields are as large as anything

that can be defined as averages in the local zero-momentumframe. The time

history of any componentof the fields behaves for all practical purposes like

a random variable. This is the definition of "strong turbulence", if one is
needed.

Because it is the only one of the four descriptions that is close

to being manageable, even numerically, MHDassumesthe role of the only serious
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contender for a "strong turbulence" mathematical description. It is far simpler,
mathematically, than any of the others, and yet the number of strong turbulence

problems that we can handle with it will be seen to be extremely limited, even

assuming its correctness.
The following material is intended as a brief look at nonlinear MHD

turbulence theory, as it maybe considered as a potential solar-wind research

tool. Section II deals with the applicability of MHDitself to a plasma with

solar-wind densities and temperatures, stressing the roles of incompressibility,

collisionality, and the proper analytical form for the essential dissipative
terms. Section III summarizesthe status of incompressible MHDturbulence

theory as it has been developed so far, emphasizing the high degrees of

symmetry required if even the crudest theories are to have extractible conse-

quences. Section IV suggests sometentative implications of Sections II and
III for solar-wind research.

Anticipating the conclusions, one of them is that there is presently
available at best only an outline of a theoretical framework in which kinds of

solar wind data that have been collected could be sensibly interpreted. If we

are serious about wanting to go beyond a largely descriptive understanding of

the solar wind, a far higher fraction of our effort will have to go into under-

standing the basic plasma physics of the medium. The analytical and numerical
tools now in hand are not adequate to the demandsbeing placed on them by the

sophisticated collection of vast quantities of data, whose quality is far

higher than any framework available for making use of it.
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II. THEAPPLICABILITYOFMHD

The one-fluidMHD equations, in the simplest form in which they might
be considered realistic, is

= 0 (I)

B.VB (2)

8B qV2B,
_-1" + Z'_ = _'VZ + (3)

with a fluid velocity v, and a magnetic field _, a mass density D, a kinematic

viscosity v, and a magnetic diffusivity q. The solenoidal condition V.B = 0,

imposed initially, is preserved by Eq. (3). p is the total pressure, magnetic

plus mechanical, and is obtained from the Poisson equation which results when

the divergence of Eq. (2) is taken and use is made of Eq. (1).

Eqs. (1)-(3) are the simplest closed-form mathematical description

known for the mechanical motions of a fluid which is both energetic enough and

electrically-conducting enough to modify the magnetic field imbedded in it.

Yet the simplicity of Eqs. (1)-(3) is misleading. We are far from being able

to give analytical solutions except in highly simplified special cases, or in

the linear limit. For reasons which are by now well known (although we will

review them later), they ma/_e demands on computing capability which we cannot

always expect to meet, even numerically.

Some of the assumptions which go into the derivation of Eq. (1)-(3)

are widely known, such as the neglect of the displacement current relative to

the conduction current, or the assumption that electrostatic forces are capable

of keeping the electron and ion charge densities approximately equal. Three

assumptions need to be singled out for mention in connection with the solar

wind. They are not obviously fulfilled by solar wind parameters, and the

serious failure of any one of them can leave us with a mathematical description

which is even far less tractable than Eqs. (1)-(3). They are: (1) incompressi-

bility (V. Z = 0); (2) scalar dissipation coefficients v and q; and (3) collision-

dominated inequalities required in the derivation of Eqs.(1)-(3).
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(i) Incompressibility (V.v = 0)

Incompressibility is an undisputed feature of normal fluid mechanics

that is difficult to justify rigorously. It is usually done (Landau and

Lifshitz, 1959; Batchelor, 1967) by using estimates for the dominant force

terms in the equation of motion and their effect, through the compressibility,

on the density p of a moving fluid element. The change in density AO for a

fluid element which experiences a change in pressure Ap may be taken to be:

Ap = dP/dp cs

2
If the medium obeys an equation of state p = p(p). The sound speed is cs -= dP/dO.

Ap may be estimated by using either the py-Vv term in Eq. (2) or the B'VBJ4W

term. (These are expected to dominate the pSv/St term and the viscous term

pgV2v in cases which have significant amounts of turbulence.) For V, we will

use L -1, where L is a characteristic length over which the fields vary. Ap

may be estimated from the convective term, first, as of order ~pv 2. In this

case, the fractional variation in density is small for a typical fluid element

if

2 = v2/c 2 << l (5)
p pc s- s

as in ordinary hydrodynamics. Then we may estimate Ap from the magnetic force

term as Ap ~ B2/4w, and instead of (5), we get

Ap ~ B 2
7- << i (61

s

or that the magnetic pressure shall be small compared to the mechanical pres-

sure (6 >> l, in conventional plasma physics jargon). If there is a strong

mean field B o present which is large compared to the fluctuating B,

Ap ~ BoB/4w, and (6) is replaced by

Ap B 2 B << 1 (7)

p 4_PCs-'2 B o

or that (again in conventional plasma terms) B/B << S.
O
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Thoughthe fulfilment of conditions (5) and (7) might give somecon-

fidence in (say) the applicability of incompressible MHDfor a tokamak plasma,

no one of the three inequalities (5)-(7) can be said to characterize the solar

wind. Yet the solar wind, except for occasional shock transitions, often shows

surprisingly little density variation. From the point of view of considerations

presently known, this tendency toward incompressibility is still slightly

n_ysterious.

(2) Dissipation Coefficients

Derivations from first principles lead to far more elaborate dissipa-

tive terms than those which appear in Eqs. (1)-(3). 0nly those who have

actually dragged themselves through a Chapman-Enskog calculation of_gnetized-

plasma transport coefficients can probably appreciate the fragility of the

enterprise, but a widely-accepted derivation due to Braginskii (1965) [see

also: Book, 1980] yields a considerably_re involved term for the viscous

dissipation than that given in Eq. (2). Reverting to component notation,

p_V2vi 3should be replaced by the ion viscosity term -_ SP_/Sx_, where, in
j=l J_ J

a coordinate system with the z-axis along the magnetic field B,

Pxx = - _-n0(Wxx + Wyy) -_2_nl(Wxx - Wyy) - n3Wxy

P = - no (Wxx + wyy) + nl (Wxx - wyy) + n3w_
YY T T

P = P - + nB -xy yx -nlWxy T (wxx

P = p = -n2W - nhWy zXZ ZX XZ

= = -n2W + nhWxzPz Pzy z

Pzz = -noWzz" (8)
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The coefficients in Eq. (8) are

no = 0.96 nkBTiTi

3 nkBTi i
nl = lO 2 = n2

.T.
C1 1

1 nkBTi 1

n3 = 2 _ . = 2 n4
Cl

(9)

3kBTi/2 is an ion thermal energy, and mCl" = eB/m.cl is the proton gyrofrequency.

T. is an ion collision time and is given by
1

3F_mi (kBTi)3/2

T. = (10)
z 4_nle 4

where m. is the ion (proton) mass, n is the proton number density, e is the
z

proton charge, and I is the Coulomb logarithm, typically l0 to 20.

strain tensor Wjk is

The rate of

ark 2 (ll)8vj +___ _ V.v

Wjk = axk 8x. 3 6Jk ~
J

The viscosity coefficients no, nl, n 2, n 3, n4 differ mainly by the

numbers of powers of _ .T. they contain in the denominators. The largest term
C1 1

for solar-wind plasmas is no. A formal estimate of the no-COntaining terms

at 1AU, using measured values for the length scales and typical fluctuating

velocities, leads to the conclusion that the O° terms are by orders of magnitude

the largest terms in the equation of motion' There is nothing else in the

equations of motion that they could be equated to unless the coefficients

multiplying the n were themselves small. These coefficients turn out to be
O

linear combinations of V.v and V..v_, (here, the subscript "_" applied to a

vector means the components perpendicular to B). Only if V.v =0 and V,-v, _0
B m

does it appear that the viscous terms can do anything but completely overpower

every other term in the equation. This may be a more convincing argument for

incompressibility than any that can be given in the conventional way, as in

the previous subsection. It does, however, leave an additional constraint,

incompressibility in the plane perpendicular to B, which is not built into
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Eqs. (1)-(3). The constraint Vz.v_,= 0 does comeup in the Strauss (1976;
Montgomery, 1982) equations of "reduced" MHD,which are appropriate to the case

of strong externally-imposed dc magnetic field (_ << 1), but its content with-

out the presence of such an externally-imposed B-field is far from clear.

Finally, and perhaps most annoyingly, even if the divergences of y

and v± are small, that does not meanthat the terms containing qo are negligi-
ble. The jungle of terms involved in Eqs. (8) and (9) does not lead, by any

knownasymptotic expansion, to a simple diffusion-like viscous term such as the

last term of Eq. (2), at the time of this writing. It is possible that we

will remain in the unpleasant position of settling for the relatively tractible

DvV2_ term as a crude model of short-wavelength dissipation, knowing full well

that it is not an accurate representation.

(3) Collisionalit F

Such expressions as Eqs. (8) and (9) are the output of lengthy,

tedious Chapman-Enskog calculations which begin with a transport (e.g.,

Braginskii, 1965) equation with a Fokker-Planck collision term, and iterate

about a local Maxwell distribution. The expansion parameter, assumed small,

is the ratio of the mean collision time (T. for ions, T for electrons) to
1 e

the time scale T over which the macroscopic field variables vary, or equi-

valently, the ratio of mean free paths to macroscopic length scales. In

the solar wind, these ratios, rather than being <<l, are >>l if standard esti-

mates are used for mean free paths and collision times. From one perspective,

it is astonishing that MHD has any relevance to solar wind phenomena. It has

been suggested, not unconvincingly, that the Fokker-Planck collision terms

which are used to compute expressions such as Eqs. (8) and (9), are improper

because of the observed high level of turbulence in the solar-wind magnetic

field. Free-flight straight-line trajectories are used in evaluating collision

integrals and are cut off at a Debye length, and these may be less than appro-

priate for a particle following a tangled field line. But these are no more

than suggestions at this point, and what their implied modification of Eqs. (8)

and (9) might be has not been suggested.

In summary, there are three respects at least in which the validity

of incompressible MHD with scalar dissipation coefficients might legitimately
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be doubted for solar-windparameters. Yet is is the only contender among

mathematical descriptions which have so far proved tractable enoughto lead

to any comprehensive theory of turbulent situations. Even then, we shall see

in the following section that further severe restrictions are necessary in
order to have concrete results emerge.
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III. MAGNETOHYDRODYNAMIC TURBULENCE

If the previously-enumerated reservations about the validity of
the MHDdescription are passed over, it maybe noticed that a certain amount

of relatively clean theory of MHDturbulence has emergedin the last two decades.

The theory relies on certain idealizations that render it less than wholly
applicable to real-life solar wind conditions. Applicable or not, it constitutes
the only presently-existing framework in which statements about the solar wind

can be madewhich are more than impressionistic or anecdotal. Virtually all

of it is for the uniform-density (p = const.) case, and the incompressibility

restriction is important. No significant body of strong turbulence theory
exists for compressible fluids, even for ordinary neutral gases, and it would

be unreasonable to expect MHDto yield where the simpler compressible system
has not.

Use of the term "strong turbulence" in the preceding paragraph is

intended to differentiate it from "weak turbulence" theory, which is a perspec-

tive which has shapedmost thinking about nonlinear disordered processes in

plasmas since about 1962. In weak turbulence theory (e.g., Montgomery, 1977),

the emphasis is on systems whose dynamics maybe considered to be the interac-

tion of oscillatory normal modes, whoseoscillation period is short compared
to the characteristic time of transfer of excitations from one normal modeto

another. Our reasons for discounting the value of weak turbulence theory in
discussing the solar wind will becomeapparent whenwe write Eqs. (1)-(.3) in
appropriate dimensionless units.

We first observe that there are at least three physically distinct

time scales represented in the dynamics described by Eqs. (1)-(3). If we call

a typical rms flow speed U° (in a coordinate system moving with the local mean

velocity of the solar wind), a typical rms magnetic field strength Bo, a
typical suitably defined meanmagnetic field <B>, and a typical length scale
over which the fields vary l/k, then these three time scales maybe defined

as follows. There are: (i) the "eddy turnover time" (kUo)-I associated with

the fluid motions [in the solar wind, often Bo~Uo]; (2) the "Alfv6n transit
time" (kl<B>I/_--_)-l; and (3) two dissipative time scales (k2_) -1 and (k2q) -I

which may be the sameor different, depending upon the magnetic Prandtl number
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_/n. The situation becomesmore complex whenwe realize that there is not

one length scale ~l/k, but a whole spectrum of scales, present at any instant,

and the U and B maybe defined locally in the wavenumberk as well. In the
O O

short wavelength range (large k), the dissipative effects may be dominant,

while at large scales (small k) they may be negligible. There is no sharp

dividing line where one passes from one regime to another.

Weak turbulence theory assigns orders of magnitude to its time scales

of its excitations once and for all, and makes no provision for these to change.

Its limitations are apparent in any situation in which there are fluxes of

excitations in k space which move from one regime to another.

The point is that it is unacceptable to neglect any of the terms

in Eqs. (1)-(3). It is important to resist the temptation to try to treat a

limited range of k in dynamical isolation from the rest, making approximations

there that do not apply elsewhere in k, because of some inequalities which

obtain locally. Eqs. (1)-(3) are a package, no part of which can be ignored

without peril. It might be argued, as in Sec. II, that more terms are needed

in Eqs. (1)-(3) to do justice to the dynamics of the solar wind; if so, then

the effect is to complicate an already almost prohibitively difficult problem.

It cannot be argued that terms can be dropped because they may be "small" in

certain ranges of k.

For the solar wind, U° and the Alfv6n speed CA = Bo/_ are compar-

able in the zero-momentum frame. The coefficients _ and n are uncertain for

reasons already given, and may not even be well-defined. If the Spitzer formu-

la for the conductivity o is adopted, n = c2/4_G. If we use the Braginskii n1

to estimate the viscosity, then _ = nl/p. We get, in cgs units,

o ~ 2.5 x 1015 sec -I

_) ~ nl/D ~ 3 x l0 4 c2/sec,

~ and CAat a number density of n i0 cm -3 and a temperature of 105°K. Both U°

are typically 2 or 2.5 x 106 cm/sec, and the most typical length scales have

been measured to be L i0 II~ cm [e.g., Matthaeus and Goldstein, 1982].

We rewrite all velocities in units of U° = Bo/W_-_, all lengths in

units of L, all times in units of L/Uo, and all magnetic fields in units of

B . The dimensionless version of Eqs. (i)-(3) becomes
o
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v v : o, (12)

and

8v i V2v,_t + v....-W =-Vp + B • VB +_ ~ (13)

m 1
3_ + v . VB = B • Vv + _V2B3t ..... "

(14)

The dimensionless numbers R and S are the Reynolds number and magnetic

Reynolds number respectively: R _ UoL/_ and S _ CAL/n = UoL/n (since Uo_B /_,' O

here). For the numbers cited, R ~ l012 and S ~ l013. These large values put

us far into the regime of high Reynolds number turbulence, which is the domain

of applicability of such theory as we have (e.g., Batchelor, 1970; Panchev, 1971).

The picture of high-Reynolds number fluid turbulence which has served

as a model for the recent development of magnetofluid turbulence theory is due

to Richardson, G. I. Taylor, and Kolmogoroff, and is elegantly summarized and

developed in the classic monograph by Batchelor (1970). It does not make

reference to specific solutions of the dynamical equations, which are regarded

as irreproducible random variables. Instead, statements are made about ensemble

averages, indicated by angular brackets < >, which are hoped to be relatively

smooth and reproducible. Thus Bi, a measured component of the magnetic field,

might be divided up into a "mean" plus a "fluctuation" 6B.:
1

= <B >+ 6B.,or Bi i i

v. = <v.> + 6v.
1 1 1

(15)

for the velocity field, and so on.

What the brackets < > mean experimentally is a tricky question.

Ideally, they should represent ensemble averages over a very large number of

experiments prepared in the same way, based on measurements made after a fixed,

elapsed time. Even in the laboratory this is difficult, and in the solar wind

it is out of the question. What must be done is to conjecture something like

an ergodie hypothesis, which makes it possible to equate phase space averages

(or ensemble averages) and time averages. Because there is in the solar wind

an inevitable relative velocity between the solar wind plasma and the measuring

instruments, these time averages are really averages over a space-time trajectory,
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in the zero-momentumframe. By the time the various symmetries necessary to

interpret the data have been invoked, one has assumeda certain fraction of

the consequencesthat one would, ideally, have liked for the experiment to

demonstrate. A shaky consistency is often the most conclusive imaginable
outcome.

Very nearly all the results so far on MHDturbulence concern the case

of homogeneous turbulence, for which the statistical properties of the fields

B.(x,1~ t), vi(x,~ t) are independent of x.~ One conventionally works in the

zero-momentum frame, <v. > = 0. If the direction of the magnetic field is not
I

externally constrained in some way by boundary conditions, then <B. > = 0. The
m

quantities of theoretical interest then are mostly derivable from the covariances

v

R..(r,mj t) _ <v.(x,m t) vj(x~ + r, t)>

B

R.13.(r,~t) H <Bi(x, t) Bj(x + ~r, t)>

Bv

Rij(r , t) _ <vi(x, t) Bj(x + r, t)>

(16)

(17)

(18)

which, by the assumption of spatial homogeneity, are independent of x.

Virtually all serious theoretical attempts in both fluid and magneto-

fluid turbulence so far have centered around such quantities as these covari-

ances. Attempts to calculate R_j RB BvR.. from a closed, deterministic dynami-
' ij' lJ

cal description have displayed great ingenuity and some results, but nothing

that is of obvious use for explanation of solar wind phenomena, so far.

Analytical approaches to data have been concerned with the rotation-

ally isotropic case. In this case, the tensor description of Eqs. (16)-(18)

contracts drastically. The R_ (x, t) for example may be Fourier-decomposed
lj '

as

where

B (x t) = Idk sB (k, t)e ik'r
Rij ' ij ~ "" ~

k.k.-k26..
B

Sij(k_ t) = EB(k , t)( m J m_)
~ k 2

(19)

with a single scalar variable EB(k , t) determining the evolution of the covari-

ance. EB(k , t) is the energy spectrum, and is related to the rms fluctuating
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field variable 6B by

<(6B)2
~ > = I EB(k, t)dk. (20)

8_ 0

Eq. (19) does imply rotational isotropy, and the presence of a finite mean

<B.> will not in general permit this. Analytical impediments to a deductive
l

theory are best illustrated by illustrating the dynamics in a Fourier decomposi-

tion of v and B over a large cubical box, assuming periodic boundary conditions:

v(x, t) = Zk Z(_, t)ei_'_

B(x, t) = _ B(k, t)e i_'_ (21)

.th
If we make up a large column vector whose i element X i can be the real or

imaginary part of any component of any one of the expansion coefficients B(k, t)

or v(k, t), the Fourier decomposed structure of Eqs. (12)-(14) can be written

symbolically as [see, e.g., Orszag 1977, or Kraichnan and Montgomery, 1980]:

dX.

= _ Ci XjN k - _ X. (22)dt Jk Jk i 1

where the coupling coefficients Cij k are known, and of a kinematical nature.

The dissipation coefficients V. come from the viscous and resistive (linear)
1

terms, and generally increase quadratically with increasing wavenumber magnitude.

The essential problem with any analytical approach to Eq. (22) is

that the nonlinear (quadratic) terms are much larger, throughout most of k-space,

than the linear dissipative ones. No linearization can be justified. The

inequality is measured by the Reynolds numbers R and S, so that, particularly

for the solar wind, the nonlinearity may be expected to be strong.

Attempts at ensemble avaraging moments of the X. lead to an acute
l

closure problem exemplified by (e.g., Orszag, 1977):

<Xi2/2> + V <X 2>dt i i

= Z Cijk<Xj_._Xi> (23)
jk
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with a corresponding equation for the time derivative of each nth momentin
terms of the (n + l)st.

The situation is reminiscent of the BBGKYhierachy derived from the

Liouville equation, with the difference that no small parameters suggest them-

selves as bases for perturbation expansions. Great ingenuity has been brought
to bear, particularly by R. H. Kraichnan (1959, 1964, 1975), on the problem of

closure approximations for the momenthierarchy derived from Eqs. (22). The
calculations are lengthy, require (Kraichnan, 1964) extensive numerical analysis,

and so far have been limited to the isotropic case. Their generalization to

anisotropic cases poses formidable problems, and has not been done.

Eq. (23) expresses the growth or decay of th_ energy in a particular

Fourier modeas a sumof a large number of contributions from interacting triads

of modeswhosewave numbers sumto zero. Physical intuition is of limited

utility in assessing the cumulative effect of the large numberof these terms

which contribute to each mode: the expansion in Fourier series (or other

orthogonal functions) leave behind any simple resolution into forces and responses,

"frozen-in field lines", or any of the other readily visualizable but often non-

quantitative conceptualizations in terms of which MHDhas often been discussed.

The Cijk, or modal interaction coefficients, are smoothly-varying functions of
wavenumberwhere they are non-zero.

The statistical mechanics of the system (22) with all the dissipation

coefficients _i set - 0 is tractable. In the cases investigated (Navier-Stokes
and MHDin two and three dimensions), truncation at a large but finite number of

expansion coefficients and equations has led to systems which seemto be er_odic.

Time averages of phase functions are predictable as ensemble averages (canoni-

cal or microcanonical) based on the constancy of those invariants which are

still invariant after the truncation. These conclusions have been repeatedly

verified numerically [Seyler, et al, 1975; Fyfe et al, 1977a,b; Kells and

Orszag, 1978], and they need only to be alluded to here.

The difficulty is that the dissipative terms, if non-zero (_i # 0),

modify the dynamics qualitatively. Even though they may be relatively small

over a good part of the wavenumber space, they in effect "pull the plug" at

the high end of wavenumber space. Because they originate from terms like MV2v

and nV2B, they become arbitrarily large, when Fourier-represented, at tile large
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values of k. The effect of the (conservative) nonlinear terms is basically

to scramble, in virtually a stochastic way, excitations from one value of k to

another. Those excitations that find themselves at large values of Ikl get

gobbled up by dissipation. The flow in k space tends to be toward those regions
which are deficient, relative to the predictions of the non-dissipative equili-

brium ensembles. The nonlinear scrambling terms continually try to replenish

the excitations which are being drained away at high k. Raising the Reynolds
numbersR and S in Eqs. (13)-(14) only increases the "dissipation wave number",

at which the dissipation sets in, but does not make it go away. The prevailing

opinion is that the integrated dissipation rate for Eqs. (13), (14) remains

finite even as R ÷ _ and S + _. This gives transfer from one part of the wave-

number spectrum to another a central role in the dynamics that it does not

have in linear, or nearly linear, systems.

Very large numbers of Fourier modesare required to resolve all the

dynamically important spatial scales, as R, S become large. This provides

severe limits on numerical attempts to solve Eqs. (13) and (14). A pessimistic

rule of thumb is that one grid point (or finite element, or Fourier coefficient)

per dimension per unit Reynolds number is required. Thus, a three-dimensional
(64) 3 simulation (which will not quite fit in core on a CRAY-1)would be required

to resolve turbulence with a Reynolds numberof 64. This requirement can be

relaxed somewhat,but not by an order of magnitude---a Reynolds number1000 run

could probably not ever be resolved on a (64) 3 grid, if the Reynolds number

were to be based on the meanlength scale in the flow. Whenone begins to talk

about Reynolds numbersmanyorders of magnitude larger, the real limitations

of foreseeable computers, in dealing with turbulence, becomeapparent.

Dimensional analysis, applied to isotropic,homogeneous situations,

have led to predictions of power laws in wave number space for the energy spectra

EB(k), Ev(k) in different situations. The predictions differ from fluids to
magnetofluids, and from two to three dimensions. They are virtually the only

simple, testable analytic predictions that four decades of turbulence theory

have been able to comeup with. There are ingenious closures of the hierarchy

of which Eq. (23) is the first member,but they are not simple, and so far

they all assumehigher degrees of symmetrythan the solar wind has been shown

to possess. These dimensional analysis arguments can be grouped under the

rubric of "cascade theory".
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High Reynolds numberturbulence theories and computations have
been formalized around two general classes of situations: "forced" and "decay"

situations. Theseare at best loose approximations to actual physical cases,

but they are as close to a universal or situation-independent problem as can

be isolated. Becausethe magnetofluid equations are dissipative, a turbulent

field will eventually decay away, and one can seek features of the decay which

maybe insensitive to initial spectra. Steady-state situations require a

source of excitations, or "forcing", that is balanced against the dissipation

rate, averaged over time. The nature of the forcing, often regarded as band-

limited in wavenumber space r is usually not restricted very specifically, and

is often modelled by a random function. The search in turbulence theory, as

elsewhere in physics, is for soluble situations from which a universal, repro-

ducible, and transferable core of general behavior can be extracted.

Cascades and Inverse Cascades

Power laws and cascade processes are expected for forced situations,

not for decaying ones, unless there is reason to believe that the lifetime of

the long-wavelength components is sufficiently great that the short wavelength

components cannot distinguish them from a maintained "source". Under circum-

stances that have been discussed at great length in the published literature,

the following table (Table i) shows what has been done so far in the way of

conjecturing and establishing inertial subrange exponents for fluids and magneto-

fluids.

There is insufficient scope within this article to review in detail

the evidence and arguments for and against inertial-subrange power laws which

have been accumulated. There is little doubt that the question of exponents

has come to occupy more of the territory than it deserves, to some extent

because there are concrete theoretical predictions. The exponents derive not

from any dynamical arguments but from conjectured similarity variables. Deriv-

ing them from dynamics has been the most pursued of all subjects in turbulence

theory, but no wholly satisfactory resolution has been achieved. Even if it

were achieved, relatively little light would be shed on the dynamics of the

solar wind.
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Table i

Situation NAVIER-STOKES,

3D

NAVIER_STOKES,

2D

MHD,

3D
MHD,

2D

Cascaded

Quantity

ENERGY ENERGY &

ENSTROPHY

ENERGY &

MAGNETIC

HELICITY

ENERGY &

MAGNETIC

POTENTIAL

Direction

of Cascade

in k space

ENERGY UP ENSTROPHY UP,

ENERGY DOWN

ENERGY UP,

HELiCITY

DOWN

ENERGY UP,

MAGN.

POT. DOWN

Predicted k-5/3 k -3 k -5/3 k -5/3 or

Power Law,
Energy KOLMOGOROFF- KRAICHNAN (1967), k-3/2 k-i

Spectrum OBUKHOV (1941) BATCHELOR, FRISCH et

LEITH al (1975)*

k-5/3

k-1/3

FYFE et al

(1977b)

Experimental

Verification

Attempted

GRANT, MATTHAEUS &

STEWART, & NO GOLDSTEIN

MOLLIET (1962) (1982)

NO

Computation- FYFE et al, FYFE et al
al Verifica- NO (1977) NO* (1977)

tion [insufficient [insufficient

Attempted spatial resolu- spatial resolu-

tion] tion]

* See also Meneguzzi et al (1981).

Table i. Cascades, Inverse Cascades, and Power Law Predictions. Original

references are cited in bibliography.
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The strongest single limitation which the present cascade and inverse

cascade theory may have when applied to the solar wind concerns the assumption

of isotropy, which underlies all of the predictions listed in Table l, and all

of the dimensional analysis arguments formulated in the Kolmogoroff style since

1941. We are virtually certain that the solar wind is not isotropic, and the

weaker assumption of axisymmetry may be regarded as open to serious legitimate

doubt. It is naive to regard the removal of the isotropic restrictions on

cascade power-law predictions as only a technical point which is sure to be

overcome soon; its status is at present very dark, and no resolution is in sight.

Selective Decays

An even more tentative class of generalizations, not without implica-

tions for the solar wind, are those processes called selective decays, in which

all the fields decay as in the initial value problem, but some of the global,

non-dissipative invariants may decay less rapidly than others. Qualitatively,

there are two possible reasons for this. First, the dissipation is effective

only at the shorter wavelengths, and quantities transferred to long wavelengths

may simply stay out of reach of the dissipation. Second, dissipation integrands

for some variables may be peaked at higher wavenumbers than for others and to

be more effective at dissipation for this reason. Arguments and computations

for these possible "selective decay" processes have been presented by Montgomery,

Turner and Vahala (1978), by Matthaeus and Montgomery (1980), and by Riyopoulos,

Bondeson, and Montgomery (1982).

Each such selective decay process, if valid, would imply a tempor-

ally decreasing magnitude of the ratio of two of the ideal invariants: energy

to magnetic helicity for 3D MHD, for example (Taylor 1974 made use of such an

assumption in predicting asymptotic states of decaying toroidal Z pinches). A

variational problem arises by minimizing this ratio, which often has for its

solution a relatively simple Euler equation which predicts a quiescent state.

Needless to say, this is an attractive possibility. If the tendency of highly

disordered turbulent motions is to decay to some universal non-trivial quies-

cent state, regardless of the path of the decay, then this is indeed a wonder-

fully simple ingredient to add to the few pieces of general information we

have about turbulence.
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For example, if for 3DMHD,the energy-to-helicity ratio were to

decay toward its minimumvalue, this is simply a force-free state, a solution

of V x B = )_, where _ is a Lagrange multiplier, and v = 0 everywhere. For

2D MHD, the decay of energy to mean square magnetic potential again leads to

a quiescent state with a mean magnetic field derivable from a vector potential

B = V x A = V x ASz, where

(V2.+k 2)A : 0.

Some numerical evidence has been presented for both of these kinds of selective

decays. The results are encouraging but should be held with extreme caution;

the conclusions are difficult to document and expensive, and very few runs have

been carried out [Matthaeus and Montgomery 1980; Riyopoulos et al 1982].

A second class of decay hypothesis, not entirely consistent with the

first, concerns the ratio of the cross-helicity (another ideal invariant) to

the energy. The ratio

2fv.B dx

./'( v2+B2 )

a constant in the absence of dissipation, has been shown under some circum-

stances to increase monotonically (Grappin et al, 1982; Matthaeus, Goldstein,

and Montgomery 1982) with time in the presence of dissipation. This increase

points to an equipartitioned state, certainly not quiescent, with v = +B.

From the point of view of solar wind observations, this is an attractive

possibility, because many observations, from Belcher and Davis (1971) on,

have shown solar wind velocity fields and magnetic fields to be closely aligned

or anti-aligned. These are sometimes referred to as "Alfv$nic fluctuations".

'l'--neparadox of _g_D turbulence's tending apparently both to states

in which _c is maximal and helicity to energy is also maximal is an example

of the wide-open character of research into MHD turbulence. There is compelling

evidence for both conjectures, but both cannot be simultaneously true. If

either is true, it may well determine the asymptotic state toward which solar

wind turbulence is trying to decay.
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IV. SUMMARY

MHDturbulence theory provides the most nearly adequate framework

in which to discuss the physics of solar wind turbulence. The collected data,

however, are far superior both to the available justification of the MHDdes-

cription and to its systematic development for turbulent fields which lack

high degrees of symmetrysuch as rotational isotropy. Understanding the physics

of the solar wind at the present time is probably more limited by the unanswered

questions in turbulence theory than by any scarcity of measurements. Expanded

experimental programs to probe solar wind turbulence, such as that advocated by

the 1980 Plasma Turbulence Explorer Panel (Montgomeryet al, 1980) would require

a considerably broader attack than has so far been mounted on the basic plasma

physics of the turbulent medium.

ACKNOWLEDGMENTS

Helpful conversations with W. H. Matthaeus, M. L. Goldstein, and

A. Barnes are gratefully acknowledged.

This work was supported in part by NASAGrant NSG-7416and the U. S.
Department of Energy.

128



REFERENCES

Batchelor, G. K., An Introduction to Fluid Mechanics, Cambridge Univ. Press,

Cambridge (U.K.), 1967 [Chapt. i].

Batchelor, G. K., Theory of Homogeneous Turbulence, Cambridge Univ. Press,

New York, 1970.

Belcher, J. W., and L. Davis, Large-amplitude Alfv6n Waves in the Interplane-

tary Medium, J. Geophys. Res. 76, 3534, 1971.

Book, D. L., NRL Plasma Formulary, Office of (U.S.) Naval Research, Washington,

D.C., 1980.

Braginskii, S. I., "Transport Processes in a Plasma", translated in Reviews of

Plasma Physics, Vol. I, ed. by M. A. Leontovich; Consultants' Bureau,

New York, 1965, pp. 205-309.

Frisch, U., A. Pouquet, J. L@orat, and A. Mazure, Possibility of an Inverse

Cascade of Magnetic Helicity in Magnetohydrodynamic Turbulence, J. Fluid

Mech. 68, 769, 1975.

Fyfe, D., G. Joyce, and D. Montgomery, Magnetic Dynamo Action in Two-Dimensional

Turbulent Magnetohydrodynamics, J. Plasma Phys. 17, 317, 1977a.

Fyfe, D., D. Montgomery, and G. Joyce, Dissipative Forced Turbulence in Two-

Dimensional Magnetohydrodynamics, J. Pi_J_ma Phys. 17, 369, 1977b.

Grant, H. L., R. W. Stewart, and A. Moilliet, Turbulence Spectra from a Tidal

Channel, J. Fluid Mech. i__2,241, 1962.

Grappin, R., U. Frisch, A. Pouquet, and J. Leorat, Alfv@nic Fluctuations as

Asymptotic States of MHD Turbulence, Astronomy and Astrophysics 105, 6, 1982.

Kells, L. C. and S. A. Orszag, Randomness of Low-0rder Models of Two-Dimensional

Inviscid Dynamics, Phys. Fluids 21, 162 1978.

Kolmogoroff, A. N., The Local Structure of Turbulence in Incompressible Viscous

Fluid for Very Large Reynolds Numbers, C. R. Acad. Sci. URSS 30, 201, 1941.

Kraichnan, R. H., Remarks on Turbulence Theory, Adv. in Math. 16, 305 (1975).

Kraichnan, R. H., Inertial Ranges in Two-Dimensional Turbulence, Phys. Fluids,

8, 1385, 1967.

Kraichnan, R. H., The Structure of Isotropic Turbulence at Very High Reynolds

Number, J. Fluid Mech. _, 497 (1959).

Kraichnan, R. H., Decay of Isotropic Turbulence in the Direct-lnteraction

Approximation, Phys. Fluids _, 1030 (1964).

Kraichnan, R. H., and D. C. Montgomery, Two-Dimensional Turbulence, Rep. Prog.

Phys. 43, 547 (1980).

129



Landau, L. D., and Lifshitz, E. M., Fluid Mechanics, Pergamon Press, London,

1959. [Chapt. i].

Matthaeus, W. H., and M. L. Goldstein, Rugged Invariants of MHD Turbulence,

J. Geophys. Res. 87, 6011, 1982.

Matthaeus, W. H., M. L. Goldstein, and D. Montgomery, Dynamic Alignment of

Velocity and Magnetic Fields in Magnetohydrodynamic Turbulence, EOS (Trans.

of the AGU) 63, 5532-10, 1982.

M_tthaeus, W. H., and D. Montgomery, Selective Decay Hypothesis at High Mechanical

and Magnetic Reynolds Numbers, Ann. N.Y. Acad. Sci. 357, 203, 1980.

Meneguzzi, M., U. Frisch, and A. Pouquet, Helical and Non-helical Turbulent

Dynamos, Phys. Rev. Lett. 47, 1060, 1981.

Montgomery, D., Implications of Navier-Stokes Turbulence Theory for Plasma

Turbulence, Proc. Indian Acad. Sci. 86__AA,87, 1977.

Montgomery, D., Major Disruptions, Inverse Cascades, and the Strauss Equations ;

to appear in Physica Scripta, 1982.

Montgomery, D., Chairman, Report of the NASA Plasma Turbulence Explorer Study

Group, 715-78, NASA Jet Propulsion Laboratory, Pasadena, CA, 1980.

Montgomery, D., L. Turner, and G. Vahala, Three Dimensional Magnetohydrodynamic

Turbulence in Cylindrical Geometry, Phys. Fluids 2__i,757 (1978).

Orszag, S. A., "Lectures on the Statistical Theory of Turbulence", in Fluid

Dynamics: 1973 Les Houches Summer School of Theoretical Physics, ed. by

R. Balian and J. -L. Peube, pp. 235 ff. Gordon and Breach, New York, 1977.

Panchev. S., Random Functions and Turbulence, Pergamon Press, New York, 1971

Pedlosky, J., Geophysical Fluid Dynamics, Springer-Verlag, New York, 1979.

Riyopoulos, S., A. Bondeson, and D. Montgomery, Relaxation Toward States of

Minimum Energy in a Compact Torus, Phys. Fluids 25, 107, 1982.

Seyler, C. E., Jr., Y. Salu, D. Montgomery, and G. Knorr, Two-Dimensional Tur-

bulence in Inviscid Fluids or Guiding Center Plasmas, Phys. Fluids 18,
803, 1975.

Strauss, H. R., Nonlinear Three-Dimensional Magnetohydrodynamics of Noncircular

Tokamaks, Phys. Fluids 19, 134, 1976.

Taylor, J. B., Relaxation of Toroidal Plasma and Generation of Reyerse Magnetic

Fields, Phys. Rev. Lett. 33, 1139, 1974.

130


