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A o.e.diPnsionlelectron fluid model,, is, invostigated using 

thc mathcomatical netlhods of ,odern fluid turbulence theory. Ion

dissipative eqnilibrium canonical distributions, are determined in a,, 

phase space whose co-ordi.ates , re t e ge,a,] ap , ,.., .. 

the F~urier.,coefficients for the fiel&variables,.. Spectral densities 

are 9plqg4r,, yie~dipg, a.wavenumher.or electri: field, energy spectruna 

proportional to' h for largo wanvnumbevs. The equations of motion 

are numerically integrated ,ad#e resulting spectra, are found to 

compare well with the theoretical predictions.
 

http:a.wavenumher.or


I. INTRODUCTION 

Though not yet a completed program, the statistical theory of
 

fluid turbulence has made remarkable strides in the last two decades.
 

Many of these advances have not been digested by the plasma turbulence
 

community, however. Plasma turbulence theory, consequently, has
 

developed in a considerably less convincing conceptual framework and
 

has achieved less detailed verification of its predictions in experi

ment and numerical simulation than fluid turbulence has.
 

It is of interest to see how many turbulent plasma situations
 

can be treated by methods borrowed from fluid turbulence theory.
 

Though no survey of the plasma turbulence literature is attempted 

here, we remark upon some recent treatments of incompressible magneto

hydrodynamic turbulence'-7 in both two and three dimensions. The 

present article concerns a compressible situation: the electrostatic 

turbulence of an electron fluid plasma model. The challenging problem
 

of the Vlasov plasma, despite its enormous literature, does not appear
 

to us to be quite ripe for an approach through modern turbulence
 

techniques, except possibly in the so-called "weak turbulence" limit,
 

which has been extensively studied.
 

The principal concern in fluid turbulence has been with high
 

Reynolds number situations.. For these, the nonlinear terms are so
 

much larger than the linear ones that the dominant physical effect
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can be accurately said to be the transfer of the excitations from
 

one spatial scale to another. Often, migrations of energy across 

orders of magnitude in spa4 -al scale are involved. These miraticns 

can'be toward either shorter or longer wavelengths, depending upon 

the circumstances. Thern- is an accompanying emphasis in the theory 

on the waveniu.ber spectrum, on energy transfer functions, on cascades
 

through wavenumber space, and so on. An unanswered question (almost
 

an unasked one) in electrostatic plasmta turbulence concerns the
 

extent to which the phenomena also involve large migrations of energy
 

from one spatial scale to another. With few exceptions, theories
 

have been formulated in ways that implicitly assume that no such
 

migrations occur, and provide no mathematical machinery to describe
 

the transfer. Numerical simulations typically have not involved
 

sufficiently fine spatial resolution to see such migrations, and the
 

intensity of the search for a stable, quiescent equilibrium has often
 

led simulators to stop computing as soon as spatial fine structure
 

11
 
has begun to develop. Spectral-method computing techniques,8

which are well suited to computing simultaneously on a wide range of
 

spatial scales in Navier-Stokes and magnetohydrodynamic fluids, have
 

not yet had much impact on plasma simulation. Configuration-space
 

computations are less than satisfactory for following evolving
 

turbulent fields.
 

There are some good reasons for the neglect. Plasmas do not
 

obey the same dynamical equations over as many orders of magnitude
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in spatial scale as Ravier-Stokes fluids orvstellar-interior ID
 

fluids typically do. For example, while 1,2M fluid descriptions may
 

satisfactorily represent the largest-scale dynamics of a tokamak
 

plasTa, on the scale of the ion gyroradius there are important
 

phenomena which are not.contained in Z.ID at all. The incorporation
 

of quite different mathematical descriptions within the calculation
 

of a single turbulent situation lies out of reach of known procedures.
 

All this implies that most situations about which we can make logically 

compelling quantitative assertions will be "unrealistic" in the sense
 

that they will omit phenomena of importance for real experiments.
 

One of two alternatives must be chosen: (1) continue to ignore the
 

possibility that interesting plasmas are, like other fluids, turbulent
 

in a sense that involves transfer of the energy in the field from
 

one.spatial scale to another; or (2) study highly simplified models
 

that, while certain never to tell the whole story about a turbulent
 

plasma, may at least tell a part of it accurately. In the present
 

article we opt for the second choice as being historically the more
 

likely one along which progress may be expected.
 

In Sec. II we present the details of the model of an electron
 

plasma to be studied. It is important to recognize that in restricting
 

'attentionto an electron plasma with uniform immobile ions, we will
 

be omitting one of the more popular phenomena of the day: "Langmuir
 

solitons", and other related situations in which the ponderomotive
 

torce is involved in a fundamental way. In Sec. III the statistical
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mechanical predictions are derived. Section IV is a presentation of 

some preliminary numerical tests of the material presentea '.n See. 

III. Section V summarizes and discusses the results.
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II. TME MODEL 

We take the simplest possible model in whic electrostatic
 

effects in a plasma will be exhibited: the one-dimensional electron
 

plasmn' with a locally adiabatic equation of state. If the electron
 

density is n, the fluid velocity is v, the electric field is E, and
 

the ratio of specific heats y is 2, we have, in dimensionless units,
 

n-+ a (nv) = 0 (1)
 

BIT + = -E_ + 62(2)v 
Tt ax ox a 

T- = 1 - n (3) 

We may replace Poisson's equation, Eq. (3), by
 

B- nv (4)
 

which is an equation for the time advancement for the electric field,

/ 

if we invoke Poisson's equation as an initial condition. Equations
 

(1), (2), and (4)will then preserve the Poisson relation in time.
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n', E, and v in Eqs. (1) -(4) are functions of only one space 

coordinate x, and the time t. n is measured in units of no, the 

equilibrium average number density of the electrots and (ir!Iobile) 

positive ion background. Times are measured iii units of the inverse 
-I
 

electron plasma frequency -1eand velocities in units of the electron
, 


thermal velocity; lengths are in units of the Debyc length. The
 

mechanical pressure gradient enters in the second term on the right

hand side of Eq. (2). Any relation between the pressure and density 

other than (p/n2 = constant would have complicated the pressure 

gradient term in Eq. (2), but we believe that no qualitative restric

tions are introduced in the physics by this particular choice of 7 2. 

The term v is a dimensionless viscosity which can be thought of as 

the reciprocal of a large Reynolds number. The limit v = 0 will be 

called the "non-dissipative" limit, and is the only limit in which
 

Eqs.' (1)-(4) are a conservative system. [A linear term proportional
 

to v and containing a collision frequency is also possible in Eq. (2).]
 

There are typically two standard situations in which the pos

sibility of a tractable steady-state statistical theory of the Navier-

Stokes equation has existed: (1)the non-dissipative initial value 

problem; and (2)the driven, dissipative, steady-state problem in 

which some external agency supplies energy at a given spatial scale
 

while dissipation occurs at some shorter spatial scale as a consequence
 

of viscosity. The second problem is much more physically realistic
 

than the first, but valuable insights are obtained from studying the
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non-dissipative problem as a preliminary. If ewe want to study the 

driven, dissipative case for Eqs. (1)-(4), it is necessary to add
 

to the rig1~b-hand side of Eq. (2) a driving term which represents tin 

external source of the excitations, and to allow v to be non-zero. 

The really new feature present in Eqs. (l)-f) which to our 

knowledge has not yet been incorporated into either 1,2D or Navier-

Stokes theories is the finite compressibility. Incompressibility has 

been a useful simpli:jing feature of avier-Stokes and 111D fluids as 

far as turbulence goes, but its introduction into a one-dimensional 

plasma model would render the model meaningless. Compression is 

essential for electrostatic fields to fluctuate, since they are 

generated by density inhomogeneities. 

That some qualitatively new and unanticipated features are to 

be expected as a consequence of the finite compressibility can be
 

seen by looking at the right-hand side of Eq. (2) when v 0 Compare
0. 


the two surviving terms with respect to order of magnitude, for an
 

excitation of typical wavenumber k. For a given perturbation of the
 

density of magnitude an., say, Poisson's equation tells us that the
 

magnitude of the electric field to be expected is ~ 6nk/k. The
 

magnitude of the pressure gradient term, on the other hand, will be
 

- k8nk . Thus at very long wavelengths (>>a Debye length) the pres

sure gradient term will be negligible, while at very short wavelengths
 

(<<aDebye length) the electric field will be negligible. The
 

excitations will go from being very like a nonlinear cold plasma
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oscillation at long wavelengths to very like a nonlinear sound .ave
 

at short wavelengths, with a continuous transition in the spatial
 

scales of the order of a Debye length. (This is one respect where
 

the behavior of the model will differ sharply from that of the Vlasov
 

plasma, which, lacking collisions, will also lack the coherence at
 

short wavelengths to exhibit the sound waves.) 

The short wavelength behavior of Eq. (2), then, should be that 

of the Efler equations of a compressible perfect gas. Compressible 

turbulence usually occurs in gases as a perturbation on incompres

sible turbulence, and has been studied in isolation very little. One 

thing our experience with the Euler equations of compressible flow 

strongly suggests as a possibility, however, is a tendency toward 

the formation of shocks, or discontinuities. A picture is suggested 

in which long-wavelength turbulent plasma oscillations feed short

wavelength sound waves, which steepen towards the development of 

shocks, which in turn are eaten away by the action of the dissipation. 

The shocks may be very weak ones, and it is imaginable that dissipa

tion might destroy them before their formation becomes complete. 

This is a gross, highly conjectural picture for the short wave

length behavior, but is reminiscent of that which is known to occur
 

14  
for Burgers' equation.12 - [Burgers' equation is just Eq. (2) minus
 

the first two terms on the right-hand side.] Our program here is to
 

first apply the statistical methods of turbulence theory to the
 

non-dissipative limit of Eqs. (1)-QtX) and then to test some of our
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predictions by numerical sointions. "Inclusion of finite dissiration 

is a larger matter, and is deferred to a later publication. 
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III. STATISTICPL F01M4ULATION 

We impose periodic boundary conditions over a length L and 

Fourier-decompose, in a plane-wave expansion, v, n, and E: 

n = Fk n(k, t) exp (iks) 

E = 7k E(k, t) exp (ila) (5) 

where Sk is over all wave numbers 2nm/L, with m = 0, ±1, ±2, ... It 

is essential for complete generality to include m = 0. It can be 

shown that n(k - 0, t) = constant = 1, but it is not true that we 

can automatically set E(k = 0, t) = 0 or v(k = t)t = 0. It is a
 

common belief that the option of setting the k = 0 components of E
 

and v identically zero is the only option available or the most
 

natural and acceptable one. Appendix A is devoted to clarifying and
 

correcting this widespread misconception.
 

The equations for the Fourier coefficients are (with time
 

arguments suppressed for economy)
 

Bn(k) +ik n(r) v(p) = 0 (6)
t p+'
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+ 1 2kv(r) v(p) = -E(k) - ikn(k) (7)bt 2 p+r.--k 

ikE(k) = -n(k) (8) 

Equations (6) and (7) hold for all k. Equation3 (8), however, holds
 

only fo'r k j 0. The use of Eq. (8) will eliminate'E(k) in favor of
 

n(k) for k / 0, but an equation is needed E(O). From Eq. (4)
 

2E() (9)E n(k) v(-k) 


k
 

Equations (6)-(9) are, in general, an infinite set of ordinary dif

ferential eqations for the Fourier coefficients in the infinite 

Fourier series and as such are intractable. If further progress is 

to be made, some simplification has to be made. The simplification 

made in a linearized theory would be to replace the convolution sums 

in Eqs. (6) and (7) with the two terms where either p = 0 or r = 0, 

thus eliminating all Fourier coefficients from the equations except 

those -withwavenumbers k and 0. The resulting equations are then 

easily solved. Basically the assumption in the linearized theory is 

that all non-zero wavenrnber Fourier coefficients are small compared 

to the zero wavenumber Fourier coefficient n(O). The very nature of
 

strong turbulence, however, does not allow one to make this approxi

mation. The standard practice in fluid turbulence is rather to
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truncote the Fourier series at a large, but finite, wavenumber Y-ax" 

This truncation can be reasonably justified for the dinsipative 

proble. In that situation one envisions taking k so large that 

for any wavenumbers larger than kmx dissipation wipec out any 

Fourier coefficient before it attains any significant value. This 

is rot true, however, in the non-dissipative limit. Nevertheless 

ins ght's into how the nonlinear terms %act to shuffle energy between 

the various length scales can be obtained through this truncation 

just as these insights are gained in-the Navier-Stokes and MD 

problems.
 

The difficulties encountered in trying to solve the large, but
 

finite, truncated system of equations is not significantly different
 

from those encountered in the dynamics for a large, but finite.
 

sydtem of point particles (also described by ordinary differential
 

equations) in statistical mechanics. In a sense, what we intend to
 

do here is a statistical mechanics of Fourier coefficients.'5 In a
 

phase space consisting of the real and imaginary parts of independent
 

Fourier coefficients we can write down a Liouville equation and ask
 

for a stationary solution. As we know from elementary statistical
 

mechanics, such solutions depend critically upon the "constants of
 

the motion." We have discovered three conserved quantities for Eqs. 

(6)-(9). Two of them are the energy e and the current (or momentum) 

J, which in terms of the Fourier coefficients are 
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6(kI +k 2 + "3)
n(kl) v(k 2) v(kQ
 

+'i Iv(k 12 + In ' 2 Iu(IkI 2 (10)
k/O 2 k/ 2 k/)) 


J T, n(k) v(-k) (11) 
k/O 

Notice that the total current (momentum) is not conserved in time,
 

but only the current associated with the k / 0 modes. 1(k1 + k2 + k3) 

in the first term of P is a Kronecker 8elta which has the value 1 

whenever kI + k2 + k= O-and the value 0 whenever kI + k2 + 3 / O. 

As a result the first sum in & is a sum over all sets of three wave

numbers with 0 < Ikil r kmax, i = 1, 2, 3 allowed by the periodic 

boundary conditions which add to zero. This first term we will 

colloquially call the "triples". The remaining sums in P and the 

only sum in J are over all wavenumbers allowed by the periodic 

boundary conditions with 0 < IkI kmax . To our knowledge r.is the 

first non-quadratic constant of the motion for a truncated Fourier 

system to appear in a turbulence calculation. (See Appendix B.)
 

The constancy of the current reduces the equations for the
 

k = 0 Fourier coefficients to a pair of linear equations
 

W(0) = -E(O) (12)

bt
 



°E(O- v(0) + j (13)
at 



where n(O) = 1 has been ised. As a result
 

Q= [E(O) 2 + IV[0) +2J] v(O) (14)
 

is also a conserved quantity. Equations (12) and (13) have the exact
 

solutions
 

v(0)= -J + (vo + J) cos t - E0 sin t , (15) 

E(O) = (vo + j) sin t + Eo cos t (16) 

where vo and E0 are the initial values of v(0) and E(0), respectively.
 

We believe that e, J, and Q are the only conserved quantities
 

which survive the truncation of Eqs. (5)-(9) to a large, but finite,
 

number of Fourier coefficients. A condition that we cannot show and
 

do not believe is true is that the number density n(x, t) formed from
 

the finite Fourier series will remain non-negative at all configura

tion space points for all time even though the initial number density
 

was non-negative at all points. It would not be totally surprising
 

that a truncated Fourier series would yield a non-physical number
 

density after a finite time in the non-dissipative limit.
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The qyantities vnhich receive the most attention in turbulence 

calculations are*the wavenumber enerp<y spectra. These spectra here 

can be calcuili.ted as moments of a canonical ensemble constructed in 

the usual manner from the conserved quantities with an inverse temp

erature (Lagrange multiplier) for each conserved quantity. Unfor

tunately the triples make the calculation of moments using the full 

canonical distribution impossible. Me, therefore, consider a "weak 

turbulence" limit in which the product of three Fourier coefficients 

can be considered small compared to products of two coefficients. If 

& *represents 8 without the triples and Q = [E(O)]2 + -[vo)32 then 

we propose to use the canonical distribution 

n i exp (-.Cfe P- - y/q*) (1:7) 

to calculate the moments of Fourier coefficients. 1)is a normalizing
 

constant determined by the normalization
 

-SD dx (18) 

where I dX is an integral over all the independent real and imaginary 

parts of F6urier coefficients. Since n(k) = n*(-k) and v(k) = v*(-k) 

independent Fourier coefficients are associated with only half the 

wavenumbers. Furthermore E(k) and n(k) for k 0 are not independent 

since they are related through Poisson's equation. a, P, and 7 play 



the role of 	inverse temperatures and are constained by Uhc recutrer"Cnt 

that D be ncrx-rlizable.
 

We can make 	 a further simplification. Q involves only th e 
* 

k = 0 modes 	while E and J involve only modes with k j 0. Since we 

already have exact solutions for the k = 0 modes and are interested
 

in expectation values fdr the energy in the k 0 modes we can use,
 

for the purposes of the calculation
 

D = exp (-ae& - PJ) 	 (19) 

Furthermore, since F and J are sums of terms indexed by a single 

nvenumber, D factors into a product of distribtuons, one for each 

k. The single-k distribution is 

f k (r(It) , ni(k), vr(k), vi(k)] 

exp -aE(k) + 2(k) + l + 2Jn(k) + ( 

- t[lr(k) Yr(k) + ni(k) vi(k)] 	 (20) 

where n(k) nr(k) + ini(k) and v(k) = Vr (k) + ivi(k). The normalizing
 

constants are given by
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The requirements that the distributions be normalizable are that
 

>0
 

(22)
 

->0 for all k.
 

The latter condition can be met for all k if it can be satisfied for
 

k 
max
 

Expectation values can now be computed.
 

2
-n (k) = , (2) 

22


v'() (vi-(k)) L(+ j},( (24) 
f r([ 


(nr(k) vr(k)) = (hi(k) vi(k)) = - -L1 (25)
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Hence the wavenu cr energy spectra are given by 

1v(k = + I (26) 

in 2 1(k (27) 

and
 

2 1 (28)(IEI ) 2[a( -+ 

a and D are determinod by the condition that the expectation values 
. 

of g and J match their initial values; that is, a and D are solutions
 

of the algebraic equations
 

e...[. a(il+ k . 2++ a 2 , (29) 

(30)
2 

kO 



The electric fiel'd energy spectrum as a function of wavr' 'er 

has one basic shape: concave down, proportional to k for ki 

! for k <.-1 vith a eonti,'.zand ry 'ochin g the con-thnt value 

rerion in between.transition 

we have that = an the
In the particular case that J = 0 

spectra reauce to the simpler forms 

S) 2)(:) 

and
 

s I (32) 

is this particular case which we will examine numerically in the
It 


following section.
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IV. IITrJIQ1'Q1l S.UTfTf...
 

Ecuations (6)-(9) are solved numeriolly using the spectral 

method of 0cszag and iattrson. 1 The essence of Uhe spectral 

method is to evaluate t he convolrtion suns w.'h ch appear in these 

-equations by using the convolution theorem and a Fast Fourier 

Transform. Unforttunately the coi-olution theorem does not recognize 

truncations in k-space. Modes with Ikl > kmax can be generated, 

leading to jhat are termed aliasing errors. We have eliminated 

these aliasing errors by setting to zero the outer one-third of our
 

-computational array at the end of each time step. That is, if N is 

the total numuber of configuration space grid points, we have retained 

only the 21-/3 wavenumbers of smallest magnitude out of the possible 

N F6urier modes by setting kmax = (N/3) kri n where kmin is the smallest 

non-zero wavenumber allowed by the periodic boundary conditions. 

The time advancement is done using a fourth-order Adams

Bashforth-Moulton predictor-corrector with the first two time steps
 

being calculated by a fourth-order Runge-Kutta method.18
 

Table I gives a list of parameters for three typical runs in
 

which there is no initial J and hence P = 0. Each run begins with
 

a highly non-thermal equilibrium spectrum and the Fourier coefficients
 

are then followed in time. The initial loading sets n(k) with
 

Ik 6k n, , k .n, 9k , and 10k i initially non-zero and
 

http:method.18


OF POOR QUALM
ORIGINAL FAGH-IS 

all other coefficiunts to zero. Z.c magnitudes of the non-zero 

coefficients aru given, but the piaugs are chosen randa::ly. 

R'uni 2 wnes 42 waveunbers ("I nz.sitive and 21 negative) with 

magnitudes which lie pre,,oninantly. above k = 1. Run 3 consists of 

42 wveumbers w-,,ith a si-nificant na:rbbr of them having ,anitudes 

below k 1. Run 7 has h0 uavenumbers with several in both wava

number ranges.
 

The computing time necessary for a run varied from less than
 

2 minutes for Run 2 to approximately I bcur for Rua 7 on the IRWE
 

CDC7600 computer. This drastic chonge in computing time is not only
 

because the system of equations is larger in Run 7 than in Run 2 but
 

also because of the nature of the equations themselves. Equations
 

(6)-(9) are examples of stiff differential equations.is 7
 

Typically one has a set of stiff differential equations whenever the
 

largest time scale in the problem is orders of magnitude larger than
 

the smallest time scale in the problem. Good numerical techniques
 

for stiff differential equations are one of the current frontiers' in
 

numerical mathematics. Numerical methods which perform excellently 

on non-stiff equations may fare poorly on stiff equations. Time steps
 

in many standard schemes must be chosen small enough to fit every time 

scale in the problem even if the faster scales are transient. The
 

time step in our current problem was chosen to meet stability require

ments; the time step was halved whenever the errors in the conserved
 

quantities indicated that numerical instabilities were beginning to
 

arise.
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Time-avernued electric field enerfry spectra were computed at 

variouz intervals during the eburse of a run. "Mefinal time-averaged
 

spectra arc compared with the ensemble-averaged spectra in Eq. (31). 

Figures 1, 2, end-3 show spectra for Runs 2, 3, and 7, 

respectively. Each of the three figures consists of three panels: 

panel (a) shows the initial spectrum; panel (b) shows a time-averaged 

spectrum- during the middle of the ruzn, and panel (c)shows the final 

time-averaged spectrum.:" The solid curve in panel (c)of each fiure 

is the theoretical prediction. In Figure 1, panel (b) shows the 

spectrum -forRun 2 averaged between times t = 8.0 and t = 16.0 while 

the spectrum in panel (e) is averaged between times t = 24.0 and 

t = 32.0. In Figure 2 the spectrum in panel (b)is averaged between
 

times t = 64.0 and t 128.0 and in'panel (a) the spectrum is averaged 

between times t =,192.0 and t 256.0 for Run 3. The times in Figure 

3 for Run 7 are t = 8.0 and t = 16.0 for panel (b)and t = 24.0 and 

t = 32.0 for panel (c). Every wavenumber is plotted in Figures I
 

and 2. Because the density of points in a logarithmic plot becomes
 

so great at the high-k end of the spectrum for Run 7 only every other
 

point is plotted for 3 < k < 10 and every fourth point is plotted
 

for k > 10 in Figure 3.
 

Time histoiies of two typical Fourier coefficients are showm in
 

Figure 4 for Run 2. Figure 4(a) shows the real part of n(k = 1))
 

or equivalently the imaginary part of E(k = 1), as a function of
 

time. Figure 4(b) shows the real part of n(k = 8), or equivalently
 

the imaginary part of 8E(k = 8), as a function of time.
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Figure 5 shows time histories of"two Fourier coefficients for 

Run 3. Figure 5(a) shows the real part of n(k = 1/16) vs. time and 

Figure 5(b) shows the real part of n(k = 1/2) plotted against time. 

In both Figures 4 and 5 the oscillations predicted by the
 

linear theory seem to be present. A linear theory for Eqs. (6)-(9)
 

.gives, in our dimensionless units, the dispersion relation
 

2 = 1 +2 (35) 

relating the frequency w to the wavenumber k. For k = 1/16 this 

relation gives a period T = 2T/u - 6.1. Counting peaks in Figure 5(a) 

and dividing into the total time interval between the first and last 

peak gives T 6.2. A similar calculation for k 1/2 gives a 

theoretical period of T - 5.6 and from Figure 5(b) T - 5.8; for k = 1 

the theoretical period is T - 4.4 and from Figure 4(a) T - 4.1; for
 

k = 8 the theoretical period is T - 0.785 while from Figure 4(b) 

T 0.778. It appears that the linear oscillations are present but
 

that clearly something else is happening as well.
 

Figure 6 shows the electric field energy as a function of time 

for the two modes of Run 2 shown in Figure 4. Figure 6(a) shows 

!E(k = 1)12 versus time and Figure 6(b) shows IE(k = 8)12 versus time. 

One should notice the orders of magnitude variation in the amplitudes
 

of the modal energies. Because of this a time instantaneous wave

number spectrum has considerably more scatter in the points compared
 



to the tir.e-averaged spectra of Yj.ures 1-. TI-e ti:e hiutory 0ulots 

also sho-; the more rapid flow of erjinto out of Tht h th'ranri 1 

.-ndes. This can be expected froj;qmi. (6)-F,) :harc -' tv sec thr 

the terms responsible for this energy tremnsfer arc proiortiors3l to 

the wavenumber itself. Not only d& tbe highc:-a-en'r Fourier 

coefficients oscillate bn a more rapid t~ime scale bout tl:cy also 

equilibrate faster as indicated by the spectre1 plot-- in Figures 1-5. 

This fast rush of energy to the large wax-enubers and bence smaller 

spatial scales ..ould indicate the possibility for shock formation. 

Figures 7, 8; and 9 show configuration space plots of nu;mber 

density, velocity, and electric field, re'spectively, at four various 

times in'the course of Run 7. The shock formation is most clear in 

the velocity profiles of Figare 8. nitially the velocity is zero. 

5he first thing to occur is the linear transfer of energy from the 

electric and pressure fields to kinetic energy. At this point the 

nonlinear term in Eq. (7)begins to have effect. A simple analysis 

of the equation ORIGf'AL PAGE IS 

QE pooR. QUALM 

+ v = 0 (34) 

shows that discontinuities form in a finite tim.e, The time to this
 

discontinuity given the data of Figure 8 at time t = 0.5 predicts the
 

discontinuity to form at time t = 1.7, later than the profiles indicate.
 

The fact that something drastic has happened is even more clear in the
 



last density profile of Fijuare 7 in .ehich the plot is virtually up 

and do;n betw:een grid poiLa. Beyond time t 1.0 the cof'.gur*ation 

space profiles cannot mean much. 'This does not mean that the n'.:ari

cal solutions of Ras. (6)-(9) are incorrect or that the computed 

spectra cf Figu-res 1-3 are mathematically wrong. Because tie tinle 

to discontinuity is mucki shorter than the time to equilibrium reans 

only that the truncated Fourier representation in Eqs. (6)-(9)is 

no longer an adequate approximation to the continuous Eqs. (l)--(4) 

in the non-dissipative ,,Te addition of alimit. expect that with the 

finite dissipation at high wavenumbers that the discontinuities ill
 

not occur. If enough grid points are used (and hence more modes 

are kept in the truncation) we expect to be able to determine a shock 

,iidth and the truncated Fourier ecuations .ill be adeoyate for very 

long times. The spectral laws may be different for the dissipative
 

problem than they are here for the non-dissipative one just as the
 

dissipative problem is significantly different from the non-dissipative
 

one in Navier-Stokes fluids and 1,2D. What the above calculations do
 

seem to indicate is that migrations of energy over large spatial
 

scales is possible in a one-dimensional electron fluid. Any accurate
 

assertions involving turbulent electron plasma oscillations must take
 

these migrations into account.
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V. DISCUSSION 

In the previous sections we have produced a statistical mechan

ical description for turbulent motions in a one-dimensional electron
 

fluid plasma. The prominent aspect of this paper is the application
 

of the techniiques of fiuid 'turbulence-to a compressible situation.
 

Much needs to be done, however, before applications to physical
 

systems can be considered. The first obvious generalization is the
 

additionof a finite dissipation to the problem. Dissipation will
 

undoubtedly alter the results here as it has in-the analysis of other
 

fluid equations. For example, Kolyngoroff arguments postulating an
 

k-5/3
 energy cascade would lead to IE(k)12 . Although migrations
 

of energy across many length scales seems likely in this dissipative
 

problem, it is unclear at this point whether the transfer of energy
 

will be able to produce large scale electric fields through some
 

sort of inverse cascade process, and there is no suggestion of them
 

in the theory thus far. Shocks are also likely to play some role in
 

this problem.
 

Along other lines the inclusion of mobile ions could have
 

unknown effects. Extensions to multiple space dimensions could also
 

produce a variety of results. We already know that two-dimensional
 

Navier-Stokes and 1'41{D fluids behave differently from their three

dimensional counterparts. It is not inconceivable that a
 



29
 

multi-dimcnzion electron fluid plasma may behave differently than 

the ono-dimensiofial plasma studied here. 

We are also aware that La nmuir turbulence spectra which fall 

off as k-2 at large khave arisen in simulations far more complex 

than this one (see, e.g., Thomson et al.') and may result from a 

variety of arguments. We refrain from speculating as to whether the 

i-2 behavior should characterize either (1)mobile ion situations, 

or (2)situations with finite dissipation. 
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APPEY-P7IX A 

Frequently in studies of fluid equations via plane wave expan

sions the k = 0 node ic neglected. The k = 0 Fourier coefficient can 

be thought of as the mean value per unit length of the quantity under 

discus ion. For -exampie 

E(k = ) = 2L10 ' (x)dx 

n(k=o0)=I n(x)dx
 

That the E(k = a) mode cannot be automatically set to zero can be
 

illustrated in the following example. Suppose we were to start our
 

electron fluid initially with no number density fluctuations. Then
 

E(x) . x [1 - n(x)] ax 

implies that E(k = 0) = 0. Assume also that the initial velocity 

fluctuations are such to produce at a later time a surplus of elec

trons in one region and a deficit of electrons in another, main

taining overall charge neutrality. (See Figure 10.) E(x) in the
 

situation depicted in Figure 10 no longer has an average value of
 



k2 

zero and hence A(h = a) / O. t(_ - O) is just the jump in the 

sca3ar potential across one pcriodicity length, and periodic electric 

fieldA O noL imply it: v nishiri. It is trae that there are situa

tions in which B(k = O remains zero for all tiye, but these are not 

the fl.out Cc.sral sitiations one can envizion. 

- GV t pkGF 
*00o nW 
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APPzM'nIX B
 

In previous applications of triuncated Fourier-series to N-avier--

Stokes or t-D fluids the conserved qantities are all qu-dratic in 

the Fourier coefficients. In this appendix we will demonstrate the 

conservation of P in Eq. (1O) which involves products of three Fourier 

coefficients. There are four terms in g: the triples, the rertaining 

kinetic energy, the mechanical enerLy associated with the pressure 

field, and the electric field energy. We will differentiate each of 

the four terms, apply Eqs. (6)-(8) and sum the results. For this 

purpose it is helpful to re.ite Eqs. (6)-(8) in the form 

Mtk) -ik K 6(p + r - k) n(p) v(r) - ikv(k) - ikv(O) n(k) 

(nl) 

at 2 6(p + r - k) v(p) v(r) ikv(O) v(k) 
pr0 

- k
 
-ikn(k) - i n(k) (B2) 

where we have separated all terms with zero wavenumber coefficients
 

and eliminated E(k) in favor of n(k) for k / 0. 6(P + r - k) is the
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Kronecker delta uhich has the value 1 whenever its argnment vaniches 

and the value 0 otherwiise. Differeitiating the triples we obtain 

2 6 (k1 + k2+ ks~~±3v 2) a 

Bn2)) (k 

+ n(kj v(k3) k2 ) ( ) (%) -t 

Since the labels by which we refer to wavenumbers is immaterial, we 

-noticethat with the interchange of the labels k2 and k3 in the second 

term that it is identical to the first term. Consequently, after 

applying Fqs. (Bl) and (B2) we obtain 

-1Bt(triples)
 

E 8(kI+k 2 +k,) n(k 1 )v(k 2 ) 

- i 2 6 (P+r-k)v(p)v(r) - ikv(0Yv(kp + 5 ) 
prjo
 

-ik3 n(k3) -~ k 
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klk 0 2 2 

i
X- /Os(p+ r - k2 ) n(p) v(r) 

- iklv(kl ) - ikln(k±)v(O-)] (B3) 

which consists of seven terms. In the first term we sum over k5 . 

Again since the labels by which we refer to wavenumbers is immaterial, 

after we have summed over k3 we replace the labels p and r with the 

labels k-3 and 1 4 . In the fifth term, which also involves four 

Fourier coefficients, after ve have sumuaed over kI we replace p and 

r with k, and k4 respectively. The result for those two terms is 

I E 6(k +k +k k) n(k)v(k v(k) v(k) i(k.+k4) 
k1k2k5 k4$O 2 54' 2 ) x4'1)' 

+ i 2 +3ko v(k4)i(k'k 4)6(k +k 4 )n(kl)v(k 2 )v(k 
2~ ~ ~ ~ ---k32-kk4
 

In the last term we may exchange the label k4 with the label k2 . The 

resulting overall sum of these terms with factors n(kl) v(k 2 ) v(k 5 ) v(k4 ) 

contains a factor (kt1 + kt + kt + it 1 + 2 + -k2 3 4) 6(k kt 3 + k4 ) which
 



always vanishes. Hence the first an.d fifth ters of' (WM) cancel. 

In a similar way the second and seventh terms of (Wf) canccl th ir 

sum is 

2 6(k i+ I v(k ) v(1k5 ) v(0) (h + .... 
Irk2ky1O It) '2-T(O 1 ) 

Again ex6hange one k3 for a k to obtain a factor (kI + k2 + k3 

6(k 1 + k2 + k3) which always vanishes. _The sixth tern, after cyclic 

permtations of wavenumbers kI 4 k2 4,k 3 can be itten as 

~5 +(k- " . 5k 1 + k + k ) v(k) v(k)ik:v(kl) 

k k- kk 0 8(kI + k2+ k3) i(k +k 2 +k 3 ) V(kl) V(k2v%) 

which also vanishes. Hen6e in summary
 

7j (triples) -i E ) l2k61k+k2+k + 

Ttkik k,3 /0 (i 1 5 k3~~k~~k)h
 

(B4)
 

Differentiating the remaining kinetic energy terms of 8 gives 

by a similar process
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~ ~v~k)I'] ] 
2 6(p.r - i)v(P) V(r) 

-ikv(O) v(k) - iknik) - rr(k)] 

ik~O n (k)v(k) + (k 

Differentiating the pressure terms gives
 

1(k) nKk n n-k) 

on(-k) [-ikK6 (P 4r -k) n(p) v(r) 

- ikv(k) - ilv(O)n(k)] 

i (k: +k2 +k3) n(k3) v(1,2) n(k3) 3k 2k3 

+ i X0 n(k) v(-k) k (B6) 



And italr the electric field energy term, give 

-. - -Ft 


=~~~ 5-irk r -(Z an(p) v(r) 

- ikv(k) -w (o) n(k)] 

+ i n(k) v(-1a) 2 (137) 

Summing Eqs. (B4)- (BT) then gives be/bt = 0. bJ/ t = 0 can 

-be proven in a similar manner. 
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Table I 

List of Parameters for Three Typical 
Numerical Calculabions 

Run 2 Run5 Run 7 

N (number of grid points) 64 - 64 512 

L (length of system in 2D 2T 3 2rr 16T 

ki = 2FI/L 1 1/16 a./8 

.k 21 21/16 170/8 

Size of time step (64)' (64)-i (512)1 

(1024)-l 

Duration of run (inJ1) 32. 256. 32. 

Initial non-zero velocity 
coefficients None None None 

Initial non-zero density k = 6, 7, k = 6/16, k= 6/8, 7/8, 
(electric field) 8, 9, 10 7/16, 8/16, 8/8, 9/8, 
coefficients 9/16, 10/16 10/8 

Initial F 0.134 o.644 0.260 
Final g 
Percent change in S 

0.135 
6.67x10-

o.644 6 
.1X -

o.266o 
8.2 X10 6 

Initial J 0 0-8 
Final J -3.3 xlO"5  -l.2X10 8.7 x10 

Initial Q 
Final Q 1.5 x10-9 

01 
4.3x 

0 
-5.0 x 10 1 5 

a 0.00336 0.0173 0.0009 

Triples at end of run -0.0o0 -0.055 -o.014 
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FIGURE CAPTIOUS 

Fig. I Electric field energy spectra IE(k)12 vs. k for Run 2:
 

(a) initial conditions; (b) time averaged over times t = 8.0 

to 16.0; (c) time averaged over tines t = 24.0 to 32.0. 

Theoretical curve is the solid line in Fig. l(c).
 

Fig. 2 Electric field energy spectra IE(h) 12 vs. k for Bun 3:
 

(a) initial conditions; (b) time averaged over times
 

-t = 64.o to 128.0; We) time averaged over times t = 192.0
 

to 256.0. Theoretical curve is the solid line in Fig. 2(c).
 

Fig. 3 Electric field energy spectra jE(k) 2 vs. k for Ran 7:
 

(a) initial conditions; (b) time averaged over times 

t = 8.0 to 16.0; (c) time averaged over times t = 2h.0 

to 32.0. Theoretical curve is the solid line in Fig. 3(c). 

For clarity, only every other value of k is plotted for 

3 <k < 10 and every fourth value for k> 10.
 

Fig. 4 . Time histories of two typical Fourier coefficients in Run 2:
 

(a) the real part of n(k = 1, t); (b) the real part of
 

n(k = 8, t). 

Fig. 5 Time histories of two typical Fourier coefficients in Run 3; 

(a) the real part of n(k = 1/16, t); (b) the real part of 

n(k = 1/2, t). 



Fig. 6 Time histories of electric field energies for t% ) modes 

in Run 2: (a) IE(k = 1, t)j2 , (b) IE(k = 8, )12 _ 

Fig. 7 Number density profiles at four different tans in the 

evolution of Run 7. 

Fig. 8 Velocity field profiles at four different tines in the 

evolution of Run 7. 

Fig. 9 Electric field profiles at four different times in the 

evolution of Run 7. 

Fig. 10 Illustration showing the necessity for the E(C = O)Fourier 

coefficient. The top graphs show the initi l n(x) and EQx) 

tth E(k = 0) = 0. The bottom graphs show the final n(x) 

atd E() with E(k = 0) J 0. 
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