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ABSTRACT 195 27

It is shown that an externally-imposed, oscillating electric
field excites transverse electromagnetic waves propagating per-
pendicularly to it, in a cold plasma. The mechanism is closely
related to the parametric excitation of longitudinal plasma oscilla-
tions recently predicted by Aliev and Silin. The problem provides
an application of non-secular perturbation methods, when the equations
of motion are expanded in powers of the external electric field.
Arbitrarily small perturbations which arise spontaneously in the
plasma are amplified by the action of the electric field, for a
certain range of the driving frequency. The growth rate of the

Aﬂfza&

oscillations is calculated.



I. INTRODUCIION

It some parameter of a system capable of osclllating at
frequency Q is forced to vary with frequency 20, it is known that
the system will often spontaneously break into oscillation at the
kfrequency 0. The name usually attached to this effect is "parametric
excitation" or "parametric resonance" (see, c.g., Mj_norsky1 or Bogolyubov
and MltanOlSkiiz).

Recentty Atiev and S'i]jn5 and S'Llin)l have demonstrated the
possibitity of parammtric excitation of longitudinal electrostatic
waves In a collisionless plasma. The exciting mechanism was a spatially-
unitorm, externally-driven, electric field. The wave vectors of the
exclited waves necessarily had non-vanishing components along the
direction of the applied elcctric field.

The purpose of the present calculation is to show the existence
of a mechanism for parametric excitation of transverse electromagnetic
n.B’“

waves, in the same situation gidered by Aliev and {ili

These

¢l
-~

waves propagate perpendicularly to the applied electric field, and

represent. an offeet which will be competitive with that discussed in

references 3 and U.



In any application of the parametric excitation technique
to, say, the turbulent heating of a plasma, the excitation of trans-
verse waves must be considered as potentially a source of energy
loss. The transverse oscillations will be excited at a frequency
generally above u&Y the plasma frequency, and will be free to leave
the plasma.

Equations governing the time development of the field variables
are derived in Sec. II, but without the electrostatic assumption.
They are then specialized to the case in which the disturbances
propagate perpendicularly to the applied electric field. In Sec. III,
a perturbation treatment, in which the expansion parameter measures
the strength of the externally-applied electric field, is givenvfor
these equations. The perturbation theory is an application qﬁwﬁye

Krylov-Bogoliubov -Mitropolskii-Frieman methodsg’5

which have been
applied elsewhere6 to cold-plasma problems. The two "time scales’
which characterize the present problem are: (1) the "fast" time
scale, measured by the frequencies of the oscillations excited; and
(2) the "slow" scale which measures the rate at which energy is
fed into the oscillations, and which depends upon the strength of

the external electric field. The conditions under which the two

time scales will be quite different can be explicitly given.



IT. EQUATIONS FOR THE PERTURBED
FIELD QUANTITIES

We have in mind an axially-symmetric plasma extending to
infinity in the * z directions. An electric field which does not
vary in space, and which is understood to be externally-driven,
is given by

Ed(o) = E sinwt=e E sin w_t. (1)

ext. 0 z ext. o)

The plasma is understood to be cold, spatially-uniform, and
to contain no d.c. magnetic field. The particles of species i
(charge ei, mass mi) oscillate about their equilibrium positions with
velocities

(O) _ e. E

- i ext. A
v, = ~—— — ¢cos8wt=-e, V. cosuwt. (2)
i mi 0, 0 ol o

Finally, we complete the description of the "equilibrium” state by

specifying

n,. (O)

1

z(0)

= number density of the ith species of particle = constant,

= magnetic field = O,
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Such a state is not an exact solution of the full set of

~cold plasma equations and Maxwell's equations. It is, however,

-a good approximation for an axially-symmetric plasma out to-radius

r from the axis of symmetry, where

2 2 2 2
< o) -
r << c /[wo Zi wpi] s

2 . 2 2
: , . - <
1 (e]. F(—‘Xt./miL ) (l Zi (.Upi/wo) <1, (5)

‘with wii = Iy ”i(O)of/mi' Hereafter, our remarks apply only to the
‘region defined by (3). The same limitation applies also to the work
“of Aliev and Silin.

We now linearize the cold plasma equations about this (time-

dependent) steady state. The perturbations on the field quantities

are written without superscripts or subscripts:

i), le) 2 306y 430 2wy -0, (4a)
I ¢ Yodx Yok
2 e ';FO)
d;(i) { (0). a M A 17 +—L B , ()
1, i — m, C
JX i
2 % uns (i) = bng e n(i) , (be)



4 3 ¢ (hd)
o 9

I x

{’,j x ¥ —|/<30£Jfi , (he)

Jx Jt

ERNS IERVAA S LN [nﬁo):;m (v | (45)
- Jt C i’i i i

X

Specializing Eqs. (4) to the case ﬁé x E = O and letting

Jx

¢ = ® Jeads to the equations of Aliev and Silin.

Eqs. (4) are linear, so we may asswnc that all the field
quantities n(i),-;(i), E, % [which are, resprctively, the perturba-
tions on Lhe number density and velocity of the ith species, and
the electric and magnetic fields] have a spatial dependence
exp [iﬂ '-;], and freely superpose solutions.

Eqs. (h) differ from the usual linearized cold-plasma eguations

(o)

only by the presence of the time-dependent terms Ve, We now

specialize to the case of propagation perpendicular to Eo

<t y OT

- = (0) v
k - Vg O. Iurthermore, we assume that the external field B “
X

. " " . . .
ieweal , and represent this by a formal coxpansion parametber



(ultimately, € —» 1) in front of each.—x}j

Jt
-(0
J?Il) el—* ei vi) -
-—E=¢— — XxB
Jt m m, ¢
i i
ik + E - hnZie n(i) = 0
ik "B =0
iixfE'+1/c:’T%=o
T JE  hu (o).
ik X B l/c L - .le.ln.1 v(l)

(o)

s, getting:

e Wy, e, n(i)v,
1 1 1

(5a)

(5b)

(5¢)

(5d)

(5e)

(5¢)

From this point on, the problem is the technical one of doing

a perturbation expansion in € on Egs. (5).



III. PERTURBATION EXPANSION OF EQS. (5)

By setting € = 0 in Eqgs. (5), we recover the usual set of
field-free cold-plasma normal modes. If we were to make a naive

perturbation expansion in €,

n(i) no(i) nl(i) ng(i)

;(i) vo(i) ';1(1) 5 ;2(1)

- = . + ¢ . + ¢ N +

E EO El E2

B BO Bl B2 (6)

(the subscript now indicates the order in €), substituting (6) into
(5) and equating coefficients of equal powers of ¢, the perturbation

series would be poorly-behaved. By this, we mean that the "corrections"

-

17 Bl’ etc.) would soon

to the normal mode solutions (nl(i),';l(i), E
become larger than no(i), Vo(i), ﬁo’ ﬁo’ for certain critical values
of the frequency W,

This is a breakdown of the standard perturbation techniques which
has become familiar, and there is a by-now standard procedure fof
avoiding it. For the pure initial-value problem, which we shall be

concerned with, the most useful formulation is that of Frieman.’ One

seeks an expansion of the form (6), but with the assumption that the
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—

variables no(i), v (i), E , §O depend on time through explicit

o o]
functional dependences on the arguments t, et, e2t, «... As long as
2" , L. 2
—, C 1is treated as of 0(1), the various dependences on e¢t, € t,
(e7t)

are not involved, to lowest order in e. It turns out that this arbit-
rariness can be eliminated, and the dependences determined, by the
requirement that the higher-order corrections in Eg. (6) really shall
remain small compared to the terms which are formally of lower order
in €. This procedure has been discussed in detail elsewhere.2’5’6
We need, here, results only through O(e).

Modes in which K + E= O and K x E = O turn out to be coupled
by Egs. (5), so that the waves which are driven are of a mixed type,
neither purely longitudinal nor purely transverse. It is convenient
to pick a direction for k and call it the x-direction. Then it may
be readily shown from Egs. (5) that waves which have E perpendicular
to the Xz plane are unaffected by theicgo) driving terms, and so we
may limit consideration to waves which have only x and gz components

of ﬁ. ﬁ then has only a y-component, and we may reduce Egs. (5) to

a set of scalar equations, by defining

— — - A
E-%E +E =e E_ +e E , (7a)
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(with the ith species understood in (70) and (7d)).

trivial members of Egs. (5) become:

(7e)

(7d)

Now, the non-

p
o, (kv =0
ot i L ’
V. e.V_.B
L € 1 01T
— = L or- W
it @i/mi)EL m, ¢ cos W b,
AVT
3o " ey/m)E =0,
H -— l =
JkEL lﬂEieinL o,
3By
-]kET + l/c 3-6— =0,
JE
: T (o)
kB, - 1/c 3T - L/ £e.ng vy
_ Yoi
= -¢ hﬂZieinL — cos w b,
2E
'L . C)
- 1/e T - bm/c Z.en. vy, =0 -

(8)



We now seek a solution of (8) of the form (6):

o o %11 n,
12
Vo Vg, V1o’ VLo V10 V11 5 Voo V1o
= + € + e +oee
E_,
E
L B0, 1o EpyoBry Brpo Bpp
B

\ By Bro 71 Bro (9)

where the zeroth-order values are

PRIk - -t
Elo =58 P +8 e,
O TN - -i0t
Ep, ~ E e Kk + 51 k',
ck
B =<2 4+ 0t - -0t
k
To Qk (%T e 'k gT )
i + it it
= k — = =
Yro T Tm.0 (gT 3 k"),
ik
ei + iw £ - -iw t
v, = (§L e p §L e " p),

(10)
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with
o® = hm n§0>e?/ s
pi i i’
P oT w?
p L p1

Q. = c Kk +w£

The only difference (so far) from a classica’ perturbation
expansion is that we consider 5% and 5% to be at this stage arbitrary
functions of ¢t, ..., known only at ¢t = O. Their dependence upon €t
will emerge, in the usual way, as a consequence of the requirement
that the O(e) parts of Eq. (9) shall remain small compared to the

0(1) parts. Now, noting that in Egs. (7), j% must be interpreted as

)‘ J _d -2—),— + ... (11)
(=)

. iR {0\ s 1y - [ S
we may pass on te the Ole) part of the expansion.
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A small amount of algebraic Jjuggling with Eqgs. (8) shows

that
2
L2 _ 9
Atg 9 ET = ¢ Lhm ZiAt einLVoi cos wt
2
2 W,
)—2+w2 EL=—eZ.—EBV.coswt. (12)
3t P i ¢ T ol o) _

We substitute (9) and (10) into (12), and make use of (11), getting

+

2 3 . JE, .
J 2 . & 10, t T -0t
a__ kU _ k
o ] By R Yy © 3(ct) ©
u? Vv
_ s _pi _oi P iw iw_ g
ik | & 2 23t (g e 2"+ & ")
p
(76" + 7" (13)
d
an / 2 \ / é§+ o\g" \
J 2 . L v t L -iw t
+ W + 21 -
(atz p) B % ()Zet) e I(et )
.k 2 + Q¢ - -iQt iw t -iw t
= -5 (& vy Vo) Bpek € k%) (e'To" + ),

upon equating coefficients of €.
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Most of the solutions to Egs. (13) and (14) have the property

that ETl and ELl grow quite large, even if we start them from zero,

for certain critical values of ug. They soon grow to dominate ETO

and EI,d In detail, the terms on the right of (13) which contain

+4i (w ~w i - ~
exp [_ i ( o p) t] drive E 1 to large values when wo wp v Qk’ and

T
those on the right of (14) containing exp [j i (wo - Qk) t] drive

ELl to large values when the same condition is met.

The only way we can avoid this catastrophe is to use the (as
yet arbitrary) terms Jgf /3(et) and )g% /d(et) on the left of Egs. (13)
and (14) to cancel the trouble-causing terms on the right. One can
then readily solve for a well-behaved ETl ang E

-

been done.

L1’ once this has

Suppose we define

w o =w 4 +
0 D Qk eAk )

where & (we assume it is "small", and so write an € in front of it)

k (
measures the departure from perfect resonance. Note that for (15)
to be satisfied, we must have w2 2 wp. The cancelation of the

aforementioned resonant terms gives us:
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JgT w- .V, < .
i — - _pioif g+ *if et
g = B SN O P e (16)
D
and
Jet -
o Lok of Pt bet
X2 Jler) T Ing [Zi pi Voi] Spoe T KT (a7)

Eqs. (16) and (17) are an autonomous pair of differential
equations (with periodic coefficients) for the amplitudes §%, QE , as
functions of the "slow" time variable et. On the question of whether
or not they have growing solutions hinges the question of whether
or not the waves can be parametrically excited by this mechanism.

That growing solutions do exist can be readily demonstrated;

0 . . +
eliminating EE between Eqgs. (16) and (17) leads to

5 G 2
— o * 1 Ak — - N g§'= 0, (18)
d(et) d{et)
where we v
2 B k2 . _P_i_ﬂ'_ Z wa
) i gu? i pi of
Pk P
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%.2 is real and positive, and in any plasma, the Zi's will be

dominated by the electron contribution. Therefore

w
2 .
N (k4P 2 —ext.

~

or, picking A > O for definiteness,

e E w
t. 2 2
o v

All the solutions of (18) are of the form

+
55 ~ exp [y, et]

7= Gp ot /—Ai“mz) /2 5
=4 /-Af{wxe) /2. (20)

Eqs. (20) imply that there always exist exponentially

where

2
growing solutions which occur whenever Ai < L AT. For the case

of perfect matching, we have Ak = 0, and a maximum growth rate

which is just .
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IV. DISCUSSION

For any wo > 2 u%, there will always exist a range of wave
numbers and frequencies for which the parametric resonance condition
(15) is met, and for which Egs. (20) predict growing oscillations.

The growth rate for the most rapidly growing waves, A, must
be << the other frequencies of the problem, for the multiple time

scale approach to be applicable. For this, it suffices that

Mo
w ~ 4

) ’ nw c ka <«< 1. (21)
The waves will be oscillating at frequencies Qk (transverse part) and
u% (longitudinal part), both of which are much larger than the-
maximum growth rate A.

The foregoing theory does not provide an expression for the
limiting amplitude of the oscillations, since no such expression can
come from a linear theory, such as that of Egs. (L), or of Aliev and
silin.'

In a laboratory plasma, excitation in this manner can be

expected to lead to transverse electromagnetic waves which leave the

plasma, perpendicularly to the applied electric field. They should be
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peaked in frequency about w, - wp’ and occupy a bandwidth which is
roughly proportional to the strength of the applied electric field.
Their appearance should become less rapid as W increases. Thus,
some fairly simple and straightforward experimental predictions can

be drawn from the foregoing theory.
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7One other significant difference between this case and that of

Aliev and Silin is worth noting at this point. We are regarding k

as fixed, and thus find only a narrow band of frequencies w_ for
which transverse waves of wavelength 2ﬂ/k are parametrically excited.
However, for w, > 2 w_, there will always exist some k's for which 7,
have positive real parts. This is in contrast to the integer- -
multiple relationship that must obtain between w_ and w_ in the
longitudinal case of Refs. 3 and b. It is only & refleBtion of

the fact that for longitudinal waves, all k's oscillate at w_,

in the cold-plasma approximation. P



