33 research outputs found

    MAGE-C2/CT10 Protein Expression Is an Independent Predictor of Recurrence in Prostate Cancer

    Get PDF
    The cancer-testis (CT) family of antigens is expressed in a variety of malignant neoplasms. In most cases, no CT antigen is found in normal tissues, except in testis, making them ideal targets for cancer immunotherapy. A comprehensive analysis of CT antigen expression has not yet been reported in prostate cancer. MAGE-C2/CT-10 is a novel CT antigen. The objective of this study was to analyze extent and prognostic significance of MAGE-C2/CT10 protein expression in prostate cancer. 348 prostate carcinomas from consecutive radical prostatectomies, 29 castration-refractory prostate cancer, 46 metastases, and 45 benign hyperplasias were immunohistochemically analyzed for MAGE-C2/CT10 expression using tissue microarrays. Nuclear MAGE-C2/CT10 expression was identified in only 3.3% primary prostate carcinomas. MAGE-C2/CT10 protein expression was significantly more frequent in metastatic (16.3% positivity) and castration-resistant prostate cancer (17% positivity; p<0.001). Nuclear MAGE-C2/CT10 expression was identified as predictor of biochemical recurrence after radical prostatectomy (p = 0.015), which was independent of preoperative PSA, Gleason score, tumor stage, and surgical margin status in multivariate analysis (p<0.05). MAGE-C2/CT10 expression in prostate cancer correlates with the degree of malignancy and indicates a higher risk for biochemical recurrence after radical prostatectomy. Further, the results suggest MAGE-C2/CT10 as a potential target for adjuvant and palliative immunotherapy in patients with prostate cancer

    Subhaloes gone Notts: spin across subhaloes and finders

    Get PDF
    We present a study of a comparison of spin distributions of subhaloes found associated with a host halo. The subhaloes are found within two cosmological simulation families of Milky Way-like galaxies, namely the Aquarius and GHALO simulations. These two simulations use different gravity codes and cosmologies. We employ 10 different substructure finders, which span a wide range of methodologies from simple overdensity in configuration space to full 6D phase space analysis of particles. We subject the results to a common post-processing pipeline to analyse the results in a consistent manner, recovering the dimensionless spin parameter. We find that spin distribution is an excellent indicator of how well the removal of background particles (unbinding) has been carried out. We also find that the spin distribution decreases for substructures the nearer they are to the host haloes, and that the value of the spin parameter rises with enclosed mass towards the edge of the substructure. Finally, subhaloes are less rotationally supported than field haloes, with the peak of the spin distribution having a lower spin parameter
    corecore