74 research outputs found

    Pulmonary exacerbations of cystic fibrosis: Definition, inflammatory markers, and the role of atypical bacteria and respiratory viruses

    Get PDF
    The underlying hypothesis was that co-infection with respiratory viruses and/or "atypical" bacteria in young adult patients with cystic fibrosis, who already experience chronic pulmonary bacterial colonisation, contributes to pulmonary morbidity. The most likely mechanism would be the precipitation of acute pulmonary exacerbations. Peripheral markers of inflammation were first assessed as end-points. White cell count, plasma viscosity, and c-reactive protein increased in a quadratic fashion with declining pulmonary function. White cell count and c-reactive protein, but not plasma viscosity, demonstrated a fall with intravenous antibiotic treatment which could not be accounted for by improvement in pulmonary function. All three markers were frequently normal at the outset of treatment. In contrast neutrophil elastase was elevated in all patients tested both at the outset and completion of treatment. To define respiratory exacerbation, four approaches were compared. Inflammatory markers were too insensitive. The coefficient of variation of quantitative sputum bacteriology was too high. A combination of change from baseline FEV1 or FVC of 10% or more, or an increase in two or more lower respiratory symptoms, was found to be optimal. With this definition, no permanent loss of lung function was attributable to exacerbations. With conventional culture and serological methods, respiratory viruses were temporally associated with 11 of 373 exacerbations (3%). There was one asymptomatic seroconversion. All diagnoses were made with serology. No atypical bacteria were identified. The rate of seroconversion in the 60 patients who were followed for the full two year period was 0.083/patient/year. Because of concern about the insensitivity of the culture methods, a multiplex PCR method was developed. With combined serology and PCR, 12 of 82 (15%) exacerbations in an 8 month period were associated with viral infection. Infections were no more common in patients with CF than in healthy controls, controls with asthma, and controls with non-CF bronchiectasis. Patients who had viral infections had worse pulmonary function throughout the two year study. Plasma viscosity and CRP, but not white cell count, were higher in exacerbations with viral co-infection, and there was a greater decline in pulmonary function from pre-exacerbation baseline. FEV1 remained depressed following treatment of the exacerbation, but in most patients gradually improved subsequently. Viral infection was associated with a rise in anti-pseudomonal IgG ELISA score, which may predate deterioration in pulmonary function

    A phase II multi-institutional study assessing simultaneous in-field boost helical tomotherapy for 1-3 brain metastases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our research group has previously published a dosimetric planning study that demonstrated that a 60 Gy/10 fractions intralesional boost with whole-brain radiotherapy (WBRT) to 30 Gy/10 fractions was biologically equivalent with a stereotactic radiosurgery (SRS) boost of 18 Gy/1 fraction with 30 Gy/10 fractions WBRT. Helical tomotherapy (HT) was found to be dosimetrically equivalent to SRS in terms of target coverage and superior to SRS in terms of normal tissue tolerance. A phase I trial has been now completed at our institution with a total of 60 enrolled patients and 48 evaluable patients. The phase II dose has been determined to be the final phase I cohort dose of 60 Gy/10 fractions.</p> <p>Methods/Design</p> <p>The objective of this clinical trial is to subject the final phase I cohort dose to a phase II assessment of the endpoints of overall survival, intracranial control (ICC) and intralesional control (ILC). We hypothesize HT would be considered unsuitable for further study if the median OS for patients treated with the HT SIB technique is degraded by 2 months, or the intracranial progression-free rates (ICC and ILC) are inferior by 10% or greater compared to the expected results with treatment by whole brain plus SRS as defined by the RTOG randomized trial. A sample size of 93 patients was calculated based on these parameters as well as the statistical assumptions of alpha = 0.025 and beta = 0.1 due to multiple statistical testing. Secondary assessments of toxicity, health-related quality-of-life, cognitive changes, and tumor response are also integrated into this research protocol.</p> <p>Discussion</p> <p>To summarize, the purpose of this phase II trial is to assess this non-invasive alternative to SRS in terms of central nervous system (CNS) control when compared to SRS historical controls. A follow-up phase III trial may be required depending on the results of this trial in order to definitively assess non-inferiority/superiority of this approach. Ultimately, the purpose of this line of research is to provide patients with metastatic disease to the brain a shorter course, dose intense, non-invasive radiation treatment with equivalent or improved CNS control/survival and health-related quality-of-life/toxicity profile when compared to SRS radiotherapy.</p> <p>Trial registration</p> <p>Clinicaltrials.gov - <a href="http://www.clinicaltrials.gov/ct2/show/NCT01543542">NCT01543542</a>.</p

    A Direct Comparison of Two Densely Sampled HIV Epidemics: The UK and Switzerland

    Get PDF
    Phylogenetic clustering approaches can elucidate HIV transmission dynamics. Comparisons across countries are essential for evaluating public health policies. Here, we used a standardised approach to compare the UK HIV Drug Resistance Database and the Swiss HIV Cohort Study while maintaining data-protection requirements. Clusters were identified in subtype A1, B and C pol phylogenies. We generated degree distributions for each risk group and compared distributions between countries using Kolmogorov-Smirnov (KS) tests, Degree Distribution Quantification and Comparison (DDQC) and bootstrapping. We used logistic regression to predict cluster membership based on country, sampling date, risk group, ethnicity and sex. We analysed >8,000 Swiss and >30,000 UK subtype B sequences. At 4.5% genetic distance, the UK was more clustered and MSM and heterosexual degree distributions differed significantly by the KS test. The KS test is sensitive to variation in network scale, and jackknifing the UK MSM dataset to the size of the Swiss dataset removed the difference. Only heterosexuals varied based on the DDQC, due to UK male heterosexuals who clustered exclusively with MSM. Their removal eliminated this difference. In conclusion, the UK and Swiss HIV epidemics have similar underlying dynamics and observed differences in clustering are mainly due to different population sizes

    Host-Pathogen O-Methyltransferase Similarity and Its Specific Presence in Highly Virulent Strains of Francisella tularensis Suggests Molecular Mimicry

    Get PDF
    Whole genome comparative studies of many bacterial pathogens have shown an overall high similarity of gene content (>95%) between phylogenetically distinct subspecies. In highly clonal species that share the bulk of their genomes subtle changes in gene content and small-scale polymorphisms, especially those that may alter gene expression and protein-protein interactions, are more likely to have a significant effect on the pathogen's biology. In order to better understand molecular attributes that may mediate the adaptation of virulence in infectious bacteria, a comparative study was done to further analyze the evolution of a gene encoding an o-methyltransferase that was previously identified as a candidate virulence factor due to its conservation specifically in highly pathogenic Francisella tularensis subsp. tularensis strains. The o-methyltransferase gene is located in the genomic neighborhood of a known pathogenicity island and predicted site of rearrangement. Distinct o-methyltransferase subtypes are present in different Francisella tularensis subspecies. Related protein families were identified in several host species as well as species of pathogenic bacteria that are otherwise very distant phylogenetically from Francisella, including species of Mycobacterium. A conserved sequence motif profile is present in the mammalian host and pathogen protein sequences, and sites of non-synonymous variation conserved in Francisella subspecies specific o-methyltransferases map proximally to the predicted active site of the orthologous human protein structure. Altogether, evidence suggests a role of the F. t. subsp. tularensis protein in a mechanism of molecular mimicry, similar perhaps to Legionella and Coxiella. These findings therefore provide insights into the evolution of niche-restriction and virulence in Francisella, and have broader implications regarding the molecular mechanisms that mediate host-pathogen relationships

    Evolutionary Trends of A(H1N1) Influenza Virus Hemagglutinin Since 1918

    Get PDF
    The Pandemic (H1N1) 2009 is spreading to numerous countries and causing many human deaths. Although the symptoms in humans are mild at present, fears are that further mutations in the virus could lead to a potentially more dangerous outbreak in subsequent months. As the primary immunity-eliciting antigen, hemagglutinin (HA) is the major agent for host-driven antigenic drift in A(H3N2) virus. However, whether and how the evolution of HA is influenced by existing immunity is poorly understood for A(H1N1). Here, by analyzing hundreds of A(H1N1) HA sequences since 1918, we show the first evidence that host selections are indeed present in A(H1N1) HAs. Among a subgroup of human A(H1N1) HAs between 1918∼2008, we found strong diversifying (positive) selection at HA1 156 and 190. We also analyzed the evolutionary trends at HA1 190 and 225 that are critical determinants for receptor-binding specificity of A(H1N1) HA. Different A(H1N1) viruses appeared to favor one of these two sites in host-driven antigenic drift: epidemic A(H1N1) HAs favor HA1 190 while the 1918 pandemic and swine HAs favor HA1 225. Thus, our results highlight the urgency to understand the interplay between antigenic drift and receptor binding in HA evolution, and provide molecular signatures for monitoring future antigenically drifted 2009 pandemic and seasonal A(H1N1) influenza viruses

    Positive Selection Results in Frequent Reversible Amino Acid Replacements in the G Protein Gene of Human Respiratory Syncytial Virus

    Get PDF
    Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a “flip-flop” phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites

    Evolutionary Pathways of the Pandemic Influenza A (H1N1) 2009 in the UK

    Get PDF
    The emergence of the influenza (H1N1) 2009 virus provided a unique opportunity to study the evolution of a pandemic virus following its introduction into the human population. Virological and clinical surveillance in the UK were comprehensive during the first and second waves of the pandemic in 2009, with extensive laboratory confirmation of infection allowing a detailed sampling of representative circulating viruses. We sequenced the complete coding region of the haemagglutinin (HA) segment of 685 H1N1 pandemic viruses selected without bias during two waves of pandemic in the UK (April-December 2009). Phylogenetic analysis showed that although temporal accumulation of amino acid changes was observed in the HA sequences, the overall diversity was less than that typically seen for seasonal influenza A H1N1 or H3N2. There was co-circulation of multiple variants as characterised by signature amino acid changes in the HA. A specific substitution (S203T) became predominant both in UK and global isolates. No antigenic drift occurred during 2009 as viruses with greater than four-fold reduction in their haemagglutination inhibition (HI) titre (“low reactors”) were detected in a low proportion (3%) and occurred sporadically. Although some limited antigenic divergence in viruses with four-fold reduction in HI titre might be related to the presence of 203T, additional studies are needed to test this hypothesis

    Robust sequence alignment using evolutionary rates coupled with an amino acid substitution matrix

    Full text link
    BACKGROUND: Selective pressures at the DNA level shape genes into profiles consisting of patterns of rapidly evolving sites and sites withstanding change. These profiles remain detectable even when protein sequences become extensively diverged. A common task in molecular biology is to infer functional, structural or evolutionary relationships by querying a database using an algorithm. However, problems arise when sequence similarity is low. This study presents an algorithm that uses the evolutionary rate at codon sites, the dN/dS (ω) parameter, coupled to a substitution matrix as an alignment metric for detecting distantly related proteins. The algorithm, called BLOSUM-FIRE couples a newer and improved version of the original FIRE (Functional Inference using Rates of Evolution) algorithm with an amino acid substitution matrix in a dynamic scoring function. The enigmatic hepatitis B virus X protein was used as a test case for BLOSUM-FIRE and its associated database EvoDB. RESULTS: The evolutionary rate based approach was coupled with a conventional BLOSUM substitution matrix. The two approaches are combined in a dynamic scoring function, which uses the selective pressure to score aligned residues. The dynamic scoring function is based on a coupled additive approach that scores aligned sites based on the level of conservation inferred from the ω values. Evaluation of the accuracy of this new implementation, BLOSUM-FIRE, using MAFFT alignment as reference alignments has shown that it is more accurate than its predecessor FIRE. Comparison of the alignment quality with widely used algorithms (MUSCLE, T-COFFEE, and CLUSTAL Omega) revealed that the BLOSUM-FIRE algorithm performs as well as conventional algorithms. Its main strength lies in that it provides greater potential for aligning divergent sequences and addresses the problem of low specificity inherent in the original FIRE algorithm. The utility of this algorithm is demonstrated using the Hepatitis B virus X (HBx) protein, a protein of unknown function, as a test case. CONCLUSION: This study describes the utility of an evolutionary rate based approach coupled to the BLOSUM62 amino acid substitution matrix in inferring protein domain function. We demonstrate that such an approach is robust and performs as well as an array of conventional algorithms.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5

    Get PDF
    One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels

    Use of multidimensional item response theory methods for dementia prevalence prediction: an example using the Health and Retirement Survey and the Aging, Demographics, and Memory Study.

    Get PDF
    BACKGROUND: Data sparsity is a major limitation to estimating national and global dementia burden. Surveys with full diagnostic evaluations of dementia prevalence are prohibitively resource-intensive in many settings. However, validation samples from nationally representative surveys allow for the development of algorithms for the prediction of dementia prevalence nationally. METHODS: Using cognitive testing data and data on functional limitations from Wave A (2001-2003) of the ADAMS study (n = 744) and the 2000 wave of the HRS study (n = 6358) we estimated a two-dimensional item response theory model to calculate cognition and function scores for all individuals over 70. Based on diagnostic information from the formal clinical adjudication in ADAMS, we fit a logistic regression model for the classification of dementia status using cognition and function scores and applied this algorithm to the full HRS sample to calculate dementia prevalence by age and sex. RESULTS: Our algorithm had a cross-validated predictive accuracy of 88% (86-90), and an area under the curve of 0.97 (0.97-0.98) in ADAMS. Prevalence was higher in females than males and increased over age, with a prevalence of 4% (3-4) in individuals 70-79, 11% (9-12) in individuals 80-89 years old, and 28% (22-35) in those 90 and older. CONCLUSIONS: Our model had similar or better accuracy as compared to previously reviewed algorithms for the prediction of dementia prevalence in HRS, while utilizing more flexible methods. These methods could be more easily generalized and utilized to estimate dementia prevalence in other national surveys
    corecore