63 research outputs found
MyoMiner: explore gene co-expression in normal and pathological muscle
International audienceBackground: High-throughput transcriptomics measures mRNA levels for thousands of genes in a biological sample. Most gene expression studies aim to identify genes that are differentially expressed between different biological conditions, such as between healthy and diseased states. However, these data can also be used to identify genes that are co-expressed within a biological condition. Gene co-expression is used in a guilt-by-association approach to prioritize candidate genes that could be involved in disease, and to gain insights into the functions of genes, protein relations, and signaling pathways. Most existing gene co-expression databases are generic, amalgamating data for a given organism regardless of tissue-type.Methods: To study muscle-specific gene co-expression in both normal and pathological states, publicly available gene expression data were acquired for 2376 mouse and 2228 human striated muscle samples, and separated into 142 categories based on species (human or mouse), tissue origin, age, gender, anatomic part, and experimental condition. Co-expression values were calculated for each category to create the MyoMiner database.Results: Within each category, users can select a gene of interest, and the MyoMiner web interface will return all correlated genes. For each co-expressed gene pair, adjusted p-value and confidence intervals are provided as measures of expression correlation strength. A standardized expression-level scatterplot is available for every gene pair r-value. MyoMiner has two extra functions: (a) a network interface for creating a 2-shell correlation network, based either on the most highly correlated genes or from a list of genes provided by the user with the option to include linked genes from the database and (b) a comparison tool from which the users can test whether any two correlation coefficients from different conditions are significantly different.Conclusions: These co-expression analyses will help investigators to delineate the tissue-, cell-, and pathology-specific elements of muscle protein interactions, cell signaling and gene regulation. Changes in co-expression between pathologic and healthy tissue may suggest new disease mechanisms and help define novel therapeutic targets. Thus, MyoMiner is a powerful muscle-specific database for the discovery of genes that are associated with related functions based on their co-expression. MyoMiner is freely available at https://www.sys-myo.com/myominer
Cross-species inference of long non-coding RNAs greatly expands the ruminant transcriptome
Additional file 3. This file contains all supplementary tables relating to lncRNA identification via the conservation of synteny. Table S3. lncRNAs inferred in one species by the genomic alignment of a transcript assembled with the RNA-seq libraries from a related spdecies. Table S12. Presence of intergenic lncRNAs both in sheep and cattle, in regions of conserved synteny. Table S13. Presence of intergenic lncRNAs both in sheep and goat, in regions of conserved synteny. Table S14. Presence of intergenic lncRNAs both in cattle and goat, in regions of conserved synteny. Table S15. Presence of intergenic lncRNAs both in sheep and humans, in regions of conserved synteny. Table S16. Presence of intergenic lncRNAs both in goat and humans, in regions of conserved synteny. Table S17. Presence of intergenic lncRNAs both in cattle and humans, in regions of conserved synteny. Table S18. High-confidence lncRNA pairs, those conserved across species both sequentially and positionally
Genomic analysis on pygmy hog reveals extensive interbreeding during wild boar expansion
Wild boar (Sus scrofa) drastically colonized mainland Eurasia and North Africa, most likely from East Asia during the Plio-Pleistocene (2â1Mya). In recent studies, based on genome-wide information, it was hypothesized that wild boar did not replace the species it encountered, but instead exchanged genetic materials with them through admixture. The highly endangered pygmy hog (Porcula salvania) is the only suid species in mainland Eurasia known to have outlived this expansion, and therefore provides a unique opportunity to test this hybridization hypothesis. Analyses of pygmy hog genomes indicate that despite large phylogenetic divergence (~2 My), wild boar and pygmy hog did indeed interbreed as the former expanded across Eurasia. In addition, we also assess the taxonomic placement of the donor of another introgression, pertaining to a now-extinct species with a deep phylogenetic placement in the Suidae tree. Altogether, our analyses indicate that the rapid spread of wild boar was facilitated by inter-specific/inter-generic admixtures.</p
International Consensus Statement on Rhinology and Allergy: Rhinosinusitis
Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICARâRS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICARâRSâ2021 as well as updates to the original 140 topics. This executive summary consolidates the evidenceâbased findings of the document. Methods: ICARâRS presents over 180 topics in the forms of evidenceâbased reviews with recommendations (EBRRs), evidenceâbased reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICARâRSâ2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidenceâbased management algorithm is provided. Conclusion: This ICARâRSâ2021 executive summary provides a compilation of the evidenceâbased recommendations for medical and surgical treatment of the most common forms of RS
- âŠ