449 research outputs found

    Multi-scale modeling and mechanical performance characterization of stingray skeleton-inspired tessellations

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordSharks and rays have distinctive skeletons among vertebrate animals, consisting primarily of unmineralized cartilage wrapped in a surface tessellation of minute polygonal tiles called tesserae, linked by unmineralized collagenous fibers. The discrete combination of hard and soft tissues is hypothesized to enhance the mechanical performance of tessellated cartilage (which performs many of the same functional roles as bone) by providing either rigidity or flexibility, depending on the nature of the applied load. These mechanisms and the effect of tesserae ultrastructure on cartilage mechanics, however, have never been demonstrated in the actual tissue, nor in bio-accurate models. Here, we develop bio-inspired three-dimensional tesserae computer models, incorporating material properties and ultrastructural features from natural tessellated cartilage. The geometries of ultrastructural features were varied parametrically, and the effective modulus of whole tesserae was evaluated using finite element analysis (FEA) to determine the roles of ultrastructural features in mechanics. Whereas altering some structural features had no effect on the macroscopic in-plane modulus of tesserae, a three-fold increase in the contact surface area between two adjacent tesserae increased the effective modulus of tesserae by 6%. Modeled stress distributions suggest that tesseral ‘spokes’ (distinct hypermineralized features in tesserae) bear maximum stresses in the skeleton and serve to funnel stresses to particular populations of cells in tesserae, while spokes’ lamellated structure likely helps dissipate crack energy, making tesserae more damage-tolerant. Simulations of multi-tesseral arrays showed that maximum stresses in tension and compression are borne by different tissues, supporting hypotheses of multi-functional properties of tessellated cartilage. Further, tesseral array models showed that minor alterations to tesserae/joint shape and/or material properties can be used to tune the mechanical behavior of the whole tiled composite. Our models provide the first functional understanding of the distinct morphologies of spokes and of ‘stellate’ tesserae (a tesseral shape observed first over 150 years ago), while also being useful drivers for hypotheses of growth, mechanics, load management, and the prevention and ‘directing’ of cracks in tessellated cartilage, as well as other biological composites. Additionally, these results establish guidelines and design principles for bio-inspired, tunable tiled materials

    Brucellosis remains a neglected disease inthe developing world: a call forinterdisciplinary action

    Get PDF
    Brucellosis places significant burdens on the human healthcare system and limits the economic growth of individuals, communities, and nations where such development is especially important to diminish the prevalence of poverty. The implementation of public policy focused on mitigating the socioeconomic effects of brucellosis in human and animal populations is desperately needed. When developing a plan to mitigate the associated consequences, it is vital to consider both the abstract and quantifiable effects. This requires an interdisciplinary and collaborative, or One Health, approach that consists of public education, the development of an infrastructure for disease surveillance and reporting in both veterinary and medical fields, and campaigns for control in livestock and wildlife species

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses

    Developing an agenda for research about policies to improve access to healthy foods in rural communities: a concept mapping study

    Get PDF
    Background Policies that improve access to healthy, affordable foods may improve population health and reduce health disparities. In the United States most food access policy research focuses on urban communities even though residents of rural communities face disproportionately higher risk for nutrition-related chronic diseases compared to residents of urban communities. The purpose of this study was to (1) identify the factors associated with access to healthy, affordable food in rural communities in the United States; and (2) prioritize a meaningful and feasible rural food policy research agenda. Methods This study was conducted by the Rural Food Access Workgroup (RFAWG), a workgroup facilitated by the Nutrition and Obesity Policy Research and Evaluation Network. A national sample of academic and non-academic researchers, public health and cooperative extension practitioners, and other experts who focus on rural food access and economic development was invited to complete a concept mapping process that included brainstorming the factors that are associated with rural food access, sorting and organizing the factors into similar domains, and rating the importance of policies and research to address these factors. As a last step, RFAWG members convened to interpret the data and establish research recommendations. Results Seventy-five participants in the brainstorming exercise represented the following sectors: non-extension research (n = 27), non-extension program administration (n = 18), “other� (n = 14), policy advocacy (n = 10), and cooperative extension service (n = 6). The brainstorming exercise generated 90 distinct statements about factors associated with rural food access in the United States; these were sorted into 5 clusters. Go Zones were established for the factors that were rated highly as both a priority policy target and a priority for research. The highest ranked policy and research priorities include strategies designed to build economic viability in rural communities, improve access to federal food and nutrition assistance programs, improve food retail systems, and increase the personal food production capacity of rural residents. Respondents also prioritized the development of valid and reliable research methodologies to measure variables associated with rural food access. Conclusions This collaborative, trans-disciplinary, participatory process, created a map to guide and prioritize research about polices to improve healthy, affordable food access in rural communities

    The Synaptonemal Complex Protein Zip1 Promotes Bi-Orientation of Centromeres at Meiosis I

    Get PDF
    In meiosis I, homologous chromosomes become paired and then separate from one another to opposite poles of the spindle. In humans, errors in this process are a leading cause of birth defects, mental retardation, and infertility. In most organisms, crossing-over, or exchange, between the homologous partners provides a link that promotes their proper, bipolar, attachment to the spindle. Attachment of both partners to the same pole can sometimes be corrected during a delay that is triggered by the spindle checkpoint. Studies of non-exchange chromosomes have shown that centromere pairing serves as an alternative to exchange by orienting the centromeres for proper microtubule attachment. Here, we demonstrate a new role for the synaptonemal complex protein Zip1. Zip1 localizes to the centromeres of non-exchange chromosomes in pachytene and mediates centromere pairing and segregation of the partners at meiosis I. Exchange chromosomes were also found to experience Zip1-dependent pairing at their centromeres. Zip1 was found to persist at centromeres, after synaptonemal complex disassembly, remaining there until microtubule attachment. Disruption of this centromere pairing, in spindle checkpoint mutants, randomized the segregation of exchange chromosomes. These results demonstrate that Zip1-mediated pairing of exchange chromosome centromeres promotes an initial, bipolar attachment of microtubules. This activity of Zip1 lessens the load on the spindle checkpoint, greatly reducing the chance that the cell will exit the checkpoint delay with an improperly oriented chromosome pair. Thus exchange, the spindle checkpoint, and centromere pairing are complementary mechanisms that ensure the proper segregation of homologous partners at meiosis I

    Squalamine: An Appropriate Strategy against the Emergence of Multidrug Resistant Gram-Negative Bacteria?

    Get PDF
    We reported that squalamine is a membrane-active molecule that targets the membrane integrity as demonstrated by the ATP release and dye entry. In this context, its activity may depend on the membrane lipid composition. This molecule shows a preserved activity against bacterial pathogens presenting a noticeable multi-resistance phenotype against antibiotics such as polymyxin B. In this context and because of its structure, action and its relative insensitivity to efflux resistance mechanisms, we have demonstrated that squalamine appears as an alternate way to combat MDR pathogens and by pass the gap regarding the failure of new active antibacterial molecules

    Adequacy of Diabetes Care for Older U.S. Rural Adults: A Cross-sectional Population Based Study Using 2009 BRFSS Data

    Get PDF
    Background: In the U.S. diabetes prevalence estimates for adults ≥ 65 years exceed 20%. Rural communities have higher proportions of older individuals and health disparities associated with rural residency place rural communities at risk for a higher burden from diabetes. This study examined the adequacy of care received by older rural adults for their diabetes to determine if older rural adults differed in the receipt of adequate diabetes care when compared to their non-rural counterparts. Methods: Cross-sectional data from the 2009 Behavioral Risk Factor Surveillance Survey were examined using bivariate and multivariate analytical techniques. Results: Logistic regression analysis revealed that older rural adults with diabetes were more likely to receive less than adequate care when compared to their non-rural counterparts (OR = 1.465, 95% CI: 1.454-1.475). Older rural adults receiving less than adequate care for their diabetes were more likely to be: male, non-Caucasian, less educated, unmarried, economically poorer, inactive, a smoker. They were also more likely to: have deferred medical care because of cost, not have a personal health care provider, and not have had a routine medical check-up within the last 12 months. Conclusion: There are gaps between what is recommended for diabetes management and the management that older individuals receive. Older adults with diabetes living in rural communities are at greater risk for less than adequate care when compared to their non-rural counterparts. These results suggest the need to develop strategies to improve diabetes care for older adults with diabetes and to target those at highest risk

    Cumulative culture in nonhumans : overlooked findings from Japanese monkeys?

    Get PDF
    The authors thank Corpus Christi College (Cambridge) for funding DS’s visit to Koshima and Prof. Tetsuro Matsuzawa for funding WCM’s visit to Koshima.Cumulative culture, generally known as the increasing complexity or efficiency of cultural behaviors additively transmitted over successive generations, has been emphasized as a hallmark of human evolution. Recently, reviews of candidates for cumulative culture in nonhuman species have claimed that only humans have cumulative culture. Here, we aim to scrutinize this claim, using current criteria for cumulative culture to re-evaluate overlooked qualitative but longitudinal data from a nonhuman primate, the Japanese monkey (Macaca fuscata). We review over 60 years of Japanese ethnography of Koshima monkeys, which indicate that food-washing behaviors (e.g., of sweet potato tubers and wheat grains) seem to have increased in complexity and efficiency over time. Our reassessment of the Koshima ethnography is preliminary and nonquantitative, but it raises the possibility that cumulative culture, at least in a simple form, occurs spontaneously and adaptively in other primates and nonhumans in nature.Publisher PDFPeer reviewe
    corecore