539 research outputs found
Multi-scale modeling and mechanical performance characterization of stingray skeleton-inspired tessellations
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordSharks and rays have distinctive skeletons among vertebrate animals, consisting primarily of unmineralized cartilage wrapped in a surface tessellation of minute polygonal tiles called tesserae, linked by unmineralized collagenous fibers. The discrete combination of hard and soft tissues is hypothesized to enhance the mechanical performance of tessellated cartilage (which performs many of the same functional roles as bone) by providing either rigidity or flexibility, depending on the nature of the applied load. These mechanisms and the effect of tesserae ultrastructure on cartilage mechanics, however, have never been demonstrated in the actual tissue, nor in bio-accurate models. Here, we develop bio-inspired three-dimensional tesserae computer models, incorporating material properties and ultrastructural features from natural tessellated cartilage. The geometries of ultrastructural features were varied parametrically, and the effective modulus of whole tesserae was evaluated using finite element analysis (FEA) to determine the roles of ultrastructural features in mechanics. Whereas altering some structural features had no effect on the macroscopic in-plane modulus of tesserae, a three-fold increase in the contact surface area between two adjacent tesserae increased the effective modulus of tesserae by 6%. Modeled stress distributions suggest that tesseral ‘spokes’ (distinct hypermineralized features in tesserae) bear maximum stresses in the skeleton and serve to funnel stresses to particular populations of cells in tesserae, while spokes’ lamellated structure likely helps dissipate crack energy, making tesserae more damage-tolerant. Simulations of multi-tesseral arrays showed that maximum stresses in tension and compression are borne by different tissues, supporting hypotheses of multi-functional properties of tessellated cartilage. Further, tesseral array models showed that minor alterations to tesserae/joint shape and/or material properties can be used to tune the mechanical behavior of the whole tiled composite. Our models provide the first functional understanding of the distinct morphologies of spokes and of ‘stellate’ tesserae (a tesseral shape observed first over 150 years ago), while also being useful drivers for hypotheses of growth, mechanics, load management, and the prevention and ‘directing’ of cracks in tessellated cartilage, as well as other biological composites. Additionally, these results establish guidelines and design principles for bio-inspired, tunable tiled materials
Brucellosis remains a neglected disease inthe developing world: a call forinterdisciplinary action
Brucellosis places significant burdens on the human healthcare system and limits the economic growth of individuals, communities, and nations where such development is especially important to diminish the prevalence of poverty. The implementation of public policy focused on mitigating the socioeconomic effects of brucellosis in human and animal populations is desperately needed. When developing a plan to mitigate the associated consequences, it is vital to consider both the abstract and quantifiable effects. This requires an interdisciplinary and collaborative, or One Health, approach that consists of public education, the development of an infrastructure for disease surveillance and reporting in both veterinary and medical fields, and campaigns for control in livestock and wildlife species
Radiation Reveal: Moving from research engagement to involvement.
Here, we report on the process of a highly impactful and successful creative, collaborative, and multi-partner public engagement project, Radiation Reveal. It brought together ten young adults aged 17-25-year-olds with experience of radiotherapy with researchers at Cancer Research UK RadNet City of London across three 2-hour online workshops. Our aims were to 1) initiate discussions between young adults and radiation researchers, and 2) identify what people wish they had known about radiotherapy before or during treatment. These aims were surpassed; other benefits included peer support, participants' continued involvement in subsequent engagement projects, lasting friendships, creation of support groups for others, and creation and national dissemination of top ten tips for medical professionals and social media resources. A key learning was that this project required a dedicated and (com)passionate person with connections to national cancer charities. When designing the project, constant feedback is also needed from charities and young adults with and without radiotherapy experience. Finally, visually capturing discussions and keeping the door open beyond workshops further enhanced impact. Here, we hope to inform and inspire people to help project the patient voice in all we do
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats
Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses
Satisfaction survey with DNA cards method to collect genetic samples for pharmacogenetics studies
BACKGROUND: Pharmacogenetic studies are essential in understanding the interindividual variability of drug responses. DNA sample collection for genotyping is a critical step in genetic studies. A method using dried blood samples from finger-puncture, collected on DNA-cards, has been described as an alternative to the usual venepuncture technique. The purpose of this study is to evaluate the implementation of the DNA cards method in a multicentre clinical trial, and to assess the degree of investigators' satisfaction and the acceptance of the patients perceived by the investigators. METHODS: Blood samples were collected on DNA-cards. The quality and quantity of DNA recovered were analyzed. Investigators were questioned regarding their general interest, previous experience, safety issues, preferences and perceived patient satisfaction. RESULTS: 151 patients' blood samples were collected. Genotyping of GST polymorphisms was achieved in all samples (100%). 28 investigators completed the survey. Investigators perceived patient satisfaction as very good (60.7%) or good (39.3%), without reluctance to finger puncture. Investigators preferred this method, which was considered safer and better than the usual methods. All investigators would recommend using it in future genetic studies. CONCLUSION: Within the clinical trial setting, the DNA-cards method was very well accepted by investigators and patients (in perception of investigators), and was preferred to conventional methods due to its ease of use and safety
Developing an agenda for research about policies to improve access to healthy foods in rural communities: a concept mapping study
Background
Policies that improve access to healthy, affordable foods may improve population health and reduce health disparities. In the United States most food access policy research focuses on urban communities even though residents of rural communities face disproportionately higher risk for nutrition-related chronic diseases compared to residents of urban communities. The purpose of this study was to (1) identify the factors associated with access to healthy, affordable food in rural communities in the United States; and (2) prioritize a meaningful and feasible rural food policy research agenda.
Methods
This study was conducted by the Rural Food Access Workgroup (RFAWG), a workgroup facilitated by the Nutrition and Obesity Policy Research and Evaluation Network. A national sample of academic and non-academic researchers, public health and cooperative extension practitioners, and other experts who focus on rural food access and economic development was invited to complete a concept mapping process that included brainstorming the factors that are associated with rural food access, sorting and organizing the factors into similar domains, and rating the importance of policies and research to address these factors. As a last step, RFAWG members convened to interpret the data and establish research recommendations.
Results
Seventy-five participants in the brainstorming exercise represented the following sectors: non-extension research (n = 27), non-extension program administration (n = 18), “other� (n = 14), policy advocacy (n = 10), and cooperative extension service (n = 6). The brainstorming exercise generated 90 distinct statements about factors associated with rural food access in the United States; these were sorted into 5 clusters. Go Zones were established for the factors that were rated highly as both a priority policy target and a priority for research. The highest ranked policy and research priorities include strategies designed to build economic viability in rural communities, improve access to federal food and nutrition assistance programs, improve food retail systems, and increase the personal food production capacity of rural residents. Respondents also prioritized the development of valid and reliable research methodologies to measure variables associated with rural food access.
Conclusions
This collaborative, trans-disciplinary, participatory process, created a map to guide and prioritize research about polices to improve healthy, affordable food access in rural communities
Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging
This study investigates the temporal and spatial interchange of the aromatic amino acid phenylalanine (Phe) between human retinal pigment epithelial cell line (ARPE-19) and tachyzoites of the apicomplexan protozoan parasite Toxoplasma gondii (T. gondii). Stable isotope labelling by amino acids in cell culture (SILAC) is combined with Raman micro-spectroscopy to selectively monitor the incorporation of deuterium-labelled Phe into proteins in individual live tachyzoites. Our results show a very rapid uptake of L-Phe(D8) by the intracellular growing parasite. T. gondii tachyzoites are capable of extracting L-Phe(D8) from host cells as soon as it invades the cell. L-Phe(D8) from the host cell completely replaces the L-Phe within T. gondii tachyzoites 7–9 hours after infection. A quantitative model based on Raman spectra allowed an estimation of the exchange rate of Phe as 0.5–1.6 × 104 molecules/s. On the other hand, extracellular tachyzoites were not able to consume L-Phe(D8) after 24 hours of infection. These findings further our understanding of the amino acid trafficking between host cells and this strictly intracellular parasite. In particular, this study highlights new aspects of the metabolism of amino acid Phe operative during the interaction between T. gondii and its host cell
The Synaptonemal Complex Protein Zip1 Promotes Bi-Orientation of Centromeres at Meiosis I
In meiosis I, homologous chromosomes become paired and then separate from one another to opposite poles of the spindle. In humans, errors in this process are a leading cause of birth defects, mental retardation, and infertility. In most organisms, crossing-over, or exchange, between the homologous partners provides a link that promotes their proper, bipolar, attachment to the spindle. Attachment of both partners to the same pole can sometimes be corrected during a delay that is triggered by the spindle checkpoint. Studies of non-exchange chromosomes have shown that centromere pairing serves as an alternative to exchange by orienting the centromeres for proper microtubule attachment. Here, we demonstrate a new role for the synaptonemal complex protein Zip1. Zip1 localizes to the centromeres of non-exchange chromosomes in pachytene and mediates centromere pairing and segregation of the partners at meiosis I. Exchange chromosomes were also found to experience Zip1-dependent pairing at their centromeres. Zip1 was found to persist at centromeres, after synaptonemal complex disassembly, remaining there until microtubule attachment. Disruption of this centromere pairing, in spindle checkpoint mutants, randomized the segregation of exchange chromosomes. These results demonstrate that Zip1-mediated pairing of exchange chromosome centromeres promotes an initial, bipolar attachment of microtubules. This activity of Zip1 lessens the load on the spindle checkpoint, greatly reducing the chance that the cell will exit the checkpoint delay with an improperly oriented chromosome pair. Thus exchange, the spindle checkpoint, and centromere pairing are complementary mechanisms that ensure the proper segregation of homologous partners at meiosis I
- …