1,088 research outputs found

    A robust liposomal platform for direct colorimetric detection of sphingomyelinase enzyme and inhibitors

    Get PDF
    The enzyme sphingomyelinase (SMase) is an important biomarker for several diseases such as Niemann Pick’s, atherosclerosis, multiple sclerosis, and HIV. We present a two-component colorimetric SMase activity assay that is more sensitive and much faster than currently available commercial assays. Herein, SMase-triggered release of cysteine from a sphingomyelin (SM)-based liposome formulation with 60 mol % cholesterol causes gold nanoparticle (AuNP) aggregation, enabling colorimetric detection of SMase activities as low as 0.02 mU/mL, corresponding to 1.4 pM concentration. While the lipid composition offers a stable, nonleaky liposome platform with minimal background signal, high specificity toward SMase avoids cross-reactivity of other similar phospholipases. Notably, use of an SM-based liposome formulation accurately mimics the natural in vivo substrate: the cell membrane. We studied the physical rearrangement process of the lipid membrane during SMase-mediated hydrolysis of SM to ceramide using small- and wide-angle X-ray scattering. A change in lipid phase from a liquid to gel state bilayer with increasing concentration of ceramide accounts for the observed increase in membrane permeability and consequent release of encapsulated cysteine. We further demonstrated the effectiveness of the sensor in colorimetric screening of small-molecule drug candidates, paving the way for the identification of novel SMase inhibitors in minutes. Taken together, the simplicity, speed, sensitivity, and naked-eye readout of this assay offer huge potential in point-of-care diagnostics and high-throughput drug screening

    SILAC-based phosphoproteomics reveals an inhibitory role of KSR1 in p53 transcriptional activity via modulation of DBC1

    Get PDF
    BACKGROUND We have previously identified kinase suppressor of ras-1 (KSR1) as a potential regulatory gene in breast cancer. KSR1, originally described as a novel protein kinase, has a role in activation of mitogen-activated protein kinases. Emerging evidence has shown that KSR1 may have dual functions as an active kinase as well as a scaffold facilitating multiprotein complex assembly. Although efforts have been made to study the role of KSR1 in certain tumour types, its involvement in breast cancer remains unknown. METHODS A quantitative mass spectrometry analysis using stable isotope labelling of amino acids in cell culture (SILAC) was implemented to identify KSR1-regulated phosphoproteins in breast cancer. In vitro luciferase assays, co-immunoprecipitation as well as western blotting experiments were performed to further study the function of KSR1 in breast cancer. RESULTS Of significance, proteomic analysis reveals that KSR1 overexpression decreases deleted in breast cancer-1 (DBC1) phosphorylation. Furthermore, we show that KSR1 decreases the transcriptional activity of p53 by reducing the phosphorylation of DBC1, which leads to a reduced interaction of DBC1 with sirtuin-1 (SIRT1); this in turn enables SIRT1 to deacetylate p53. CONCLUSION Our findings integrate KSR1 into a network involving DBC1 and SIRT1, which results in the regulation of p53 acetylation and its transcriptional activity

    Genetic variation in autophagy-related genes influences the risk and phenotype of Buruli ulcer

    Get PDF
    Introduction Buruli ulcer (BU) is a severe necrotizing human skin disease caused by Mycobacterium ulcerans. Clinically, presentation is a sum of these diverse pathogenic hits subjected to critical immune-regulatory mechanisms. Among them, autophagy has been demonstrated as a cellular process of critical importance. Since microtubules and dynein are affected by mycolactone, the critical pathogenic exotoxin produced by M. ulcerans, cytoskeleton-related changes might potentially impair the autophagic process and impact the risk and progression of infection. Objective Genetic variants in the autophagy-related genes NOD2, PARK2 and ATG16L1 has been associated with susceptibility to mycobacterial diseases. Here, we investigated their association with BU risk, its severe phenotypes and its progression to an ulcerative form. Methods Genetic variants were genotyped using KASPar chemistry in 208 BU patients (70.2% with an ulcerative form and 28% in severe WHO category 3 phenotype) and 300 healthy endemic controls. Results The rs1333955 SNP in PARK2 was significantly associated with increased susceptibility to BU [odds ratio (OR), 1.43; P = 0.05]. In addition, both the rs9302752 and rs2066842 SNPs in NOD2 gee significantly increased the predisposition of patients to develop category 3 (OR, 2.23; P = 0.02; and OR 12.7; P = 0.03, respectively, whereas the rs2241880 SNP in ATG16L1 was found to significantly protect patients from presenting the ulcer phenotype (OR, 0.35; P = 0.02). Conclusion Our findings indicate that specific genetic variants in autophagy-related genes influence susceptibility to the development of BU and its progression to severe phenotypes.The research leading to these results received funding from the Health Services of the Fundação Calouste Gulbenkian under the grant Proc.N°94776 LJ; from the Fundação para a Ciência e Tecnologia (FCT), cofunded by Programa Operacional Regional do Norte (ON.2—O Novo 267 Norte); from the Quadro de Referência Estratégico Nacional (QREN) through the Fundo Europeu de Desenvolvimento Regional (FEDER) and from the Projeto Estratégico – LA 26 – 2013–2014 (PEst-C/SAU/LA0026/2013). JFM received an individual QREN fellowship (UMINHO/BPD/14/2014); CCu and AGF received an individual FCT fellowship (SFRH/BPD/96176/2013 and SFRH/BPD/68547/2010, respectively); and AC received an FCT contract (IF/00735/2014). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Amyloid-β aggregates activate peripheral monocytes in mild cognitive impairment

    Get PDF
    \ua9 The Author(s) 2024. The peripheral immune system is important in neurodegenerative diseases, both in protecting and inflaming the brain, but the underlying mechanisms remain elusive. Alzheimer’s Disease is commonly preceded by a prodromal period. Here, we report the presence of large Aβ aggregates in plasma from patients with mild cognitive impairment (n = 38). The aggregates are associated with low level Alzheimer’s Disease-like brain pathology as observed by 11C-PiB PET and 18F-FTP PET and lowered CD18-rich monocytes. We characterize complement receptor 4 as a strong binder of amyloids and show Aβ aggregates are preferentially phagocytosed and stimulate lysosomal activity through this receptor in stem cell-derived microglia. KIM127 integrin activation in monocytes promotes size selective phagocytosis of Aβ. Hydrodynamic calculations suggest Aβ aggregates associate with vessel walls of the cortical capillaries. In turn, we hypothesize aggregates may provide an adhesion substrate for recruiting CD18-rich monocytes into the cortex. Our results support a role for complement receptor 4 in regulating amyloid homeostasis

    Movement and habitat use of the snapping turtle in an urban landscape

    Get PDF
    In order to effectively manage urban habitats, it is important to incorporate the spatial ecology and habitat use of the species utilizing them. Our previous studies have shown that the distribution of upland habitats surrounding a highly urbanized wetland habitat, the Central Canal (Indianapolis, IN, USA) influences the distribution of map turtles (Graptemys geographica) and red-eared sliders (Trachemys scripta) during both the active season and hibernation. In this study we detail the movements and habitat use of another prominent member of the Central Canal turtle assemblage, the common snapping turtle, Chelydra serpentina. We find the same major upland habitat associations for C. serpentina as for G. geographica and T. scripta, despite major differences in their activity (e.g., C. serpentina do not regularly engage in aerial basking). These results reinforce the importance of recognizing the connection between aquatic and surrounding terrestrial habitats, especially in urban ecosystems

    Effects of postmortem calcium chloride injection on meat palatability traits of strip loin steaks from cattle supplemented with or without zilpaterol hydrochloride

    Get PDF
    An experiment was conducted to determine the effects of zilpaterol hydrochloride mM supplementation (ZH; 8.3 mg/kg on a DM basis for 20 d) and calcium chloride injection [CaCl2, 200 at 5% (wt/wt) at 72 h postmortem] on palatability traits of beef (Bos taurus) strip loin steaks. Select (USDA) strip loins were obtained from control (no ZH = 19) and ZH-supplemented carcasses (n = 20). Right and left sides were selected alternatively to serve as a control (no INJ) or CaCl2-injected (INJ) and stored at 4 degrees C Before injecting the subprimals (72 h postmortem), 2 steaks were cut for proximate, sarcomere length, and myofibrillar fragmentation index (MFI) analyses. At 7 d postmortem each strip loin was portioned into steaks, vacuum packaged, and aged for the appropriate period for Warner-Bratzler shear force (WBSF; 7, 14, 21, and 28 d postmortem), trained sensory analysis (14 and 21 d postmortem), purge loss (7 d), and MFI (3, 7, 14, 21, and 28 d postmortem). Results indicated steaks from both ZH supplementation and INJ had reduced WBSF values as days of postmortem aging increased. The WBSF values of ZH steaks were greater (P 0.05) due to ZH at 14, 21, or 28 d or due to INJ at any aging period. Trained panelists rated tenderness less in ZH steaks than steaks with no ZH at 14 d and 21 d. However, INJ improved (P < 0.05) the tenderness ratings and flavor intensity of the trained panelists, compared with their non-injected cohorts at 21 d. Zilpaterol hydrochloride supplementation reduced (P < 0.05) MFI values, but INJ resulted in greater (P < 0.05) MFI values compared with no INJ. Subprimals from ZH and INJ showed greater purge loss (P < 0.05). Although no interactions were found with ZH and CaCl2, injecting USDA Select strip loins from ZH-fed cattle can help reduce the normal WBSF variation as it does in steaks from non-ZH-fed cattle.90103584359
    corecore