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Abstract

Although rarely acknowledged, our understanding of how competition is modulated by environmental drivers is severely
hampered by our dependence on indirect measurements of outcomes, rather than the process of competition. To
overcome this, we made direct measurements of plant competition for soil nitrogen (N). Using isotope pool-dilution, we
examined the interactive effects of soil resource limitation and climatic severity between two common grassland species.
Pool-dilution estimates the uptake of total N over a defined time period, rather than simply the uptake of 15N label, as used
in most other tracer experiments. Competitive uptake of N was determined by its available form (NO3

2 or NH4
+). Soil N

availability had a greater effect than the climatic conditions (location) under which plants grew. The results did not entirely
support either of the main current theories relating the role of competition to environmental conditions. We found no
evidence for Tilman’s theory that competition for soil nutrients is stronger at low, compared with high nutrient levels and
partial support for Grime’s theory that competition for soil nutrients is greater under potentially more productive
conditions. These results provide novel insights by demonstrating the dynamic nature of plant resource competition.
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Introduction

The concept of competition among individuals is central to

ecological theory. It is often considered a determinant of the

demographic success of individuals and populations [1], the

genotypic composition of communities and hence biodiversity

[2,3] and the evolution of phenotypic strategies and traits [4]. Yet

much uncertainty persists about the role of competition in

regulating populations, structuring communities, and driving

evolution. The unresolved questions surrounding competition

are far from being trivial; they touch on many key theoretical and

applied issues. For example, models to predict organismal

responses to environmental change have struggled to incorporate

the influence of biotic interactions, of which competition is an

obvious component [5,6]. This is, in part, because there is

enduring and ongoing debate about the circumstances under

which such interactions play a substantial role in regulating

organismal success and hence community composition [7–10].

However, despite almost universal acceptance of its potential

ecological importance, and consequently the enormous attention

devoted to it, competition is notoriously resistant to direct and

unambiguous measurement [11,12].

Many supposed measures of plant competition have been used

[13] including, for example, biomass production by neighbouring

individuals [14–16] or, less often, changes in size of populations

occupying the same habitat [17,18]. Yet all of these measure an

outcome of, rather than the process of, competition, i.e., they are

proxies for competition. Competition sensu stricto – the contest for

an essential resource by neighbouring individuals that are

exploiting the same finite supply [4] – is seldom measured directly,

in situ, or in real time in terms of the simultaneous fluxes of

resources into competing individuals [19]. Of course, there are

many possible definitions of competition, which does not aid

clarity, but the explicit definition that we use here matches the

general theoretical recognition of the concept, if not its practical

application [20]. The practical and theoretical distinctions

between direct and indirect measurements of competition are

rarely appreciated. The relative ease and practicability of using

proxy indicators of competition is understandable. But at the same

time this can compromise the interpretation of competition

experiments and hinder the development of ecological theory

which is, more commonly, based on underlying mechanisms of

interactions between individuals. To quote Williams [21], ‘‘The

basic problem … is the very common one of the easily measured

variables not being the theoretically important ones.’’

Opacity on this subject has been reinforced to some extent by

the widespread use of ‘competition indices’ to estimate the effects

of competition on individuals [22]. These indices, formed by

combining several primary response variables such as the biomass

of a competitor relative to that of an isolated control, are used

routinely, but their analysis can be statistically problematic making

their interpretation potentially ambiguous [23,24].

As an alternative to these indirect approaches, a few studies

have attempted to measure the competitive contest for resources
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directly, but all of these have limitations. For example, 32P

introduced into soil containing the root systems of presumed

competitors has been used to measure: competitive interactions in

relation to root penetration at different depths [25]; competition

between a grass and a desert shrub [26]; the effects of defoliation

[19]; and responses by plants to patchy soil resources [27].

Although radio-isotopes are a powerful technique to trace

elements such as P, the potential hazards of using them severely

restrict their use, especially in the field. Other approaches include

measurements of plant height in relation to light penetration

through the mixed-species canopy and rooting depth in relation to

water depletion [28]. This method suffers, however, due to inter-

annual fluctuations in resource levels such as water and nutrients,

and general variability in conditions such as soil characteristics and

climate between locations [29].

Other studies have used stable isotopes, especially 15N tracers to

investigate competition for nitrogen (N). For example, localised
15N-labelling has been used to investigate the role of root

proliferation in interspecific competition for N, but required a

contrived system in which competition was restricted to only a

small fraction of the plants’ root systems [30]. The alternative,

more generally used, approach is to simply inject 15N sources into

soil then measure 15N excess in the easily accessible aboveground

parts of plants growing on that soil [31–34]. However, the usual

application of this method takes no account of soil microbial

activity which progressively dilutes added 15N with unlabelled

mineralisation products prior to plant uptake. This dilution effect

presents to the plants N sources of constantly varying isotopic

signatures, and so obliterates any relationship between the isotopic

abundance of the source N pool(s) and that measured in the plant.

This means that such studies can effectively estimate the

competitive uptake only of added 15N tracer, not of the soil N

pools themselves. It is the latter that matters ecologically, since

competitive success depends not only on the amount of resource

captured by a competitor relative to its neighbours, but also on the

absolute amount of resource captured as this impinges, via

stoichiometry [35] on productivity and, hence, future competi-

tiveness.

However, by combining isotope labelling with models [36,37]

that do account explicitly for the dilution of tracer in the soil pools,
15N additions to soil can be used to estimate N (and not just tracer)

uptake. Originally developed for use in agricultural settings, these

‘isotope pool-dilution’ approaches have rarely been applied to

more complex ecological situations, but are ideal to study plant

competition for soil N. It is important to emphasise the clear

distinction between pool-dilution methods [36,37] and simple

isotope-labelling experiments [31–34]: the former estimate

absolute resource (not just isotope) capture over a defined time

period; the latter estimate only the relative amounts of isotope (not

of the resource itself) captured as fractions of total isotope recovery

[38] or of that originally injected [39]. Simple isotope-labelling

can, therefore, provide no quantitative information about

competitive N (as opposed to 15N) capture, a limitation that is

rarely appreciated. Simply injecting 15N into soil and measuring its

subsequent abundance in vegetation without considering the

kinetics of microbial N transformations during the labelling period

is not pool-dilution, and the two approaches should not be confused

with one another.
15N pool-dilution has additional advantages in that the gross

rates of soil N mineralisation are also estimated. These rates reflect

the dynamic availabilities of labile N pools (principally NO3
2 and

NH4
+, but, potentially, also dissolved organic N [40]). The capture

by plants of soil NO3
2 and NH4

+ can therefore be calculated

separately even when plants have simultaneous access to those

sources. This is another important advantage of isotope pool-

dilution over simple tracer experiments, one with particular

ecological relevance given the variation among soils in the

availability of different N sources, and among plant species in

their physiological preferences for alternative sources that are

simultaneously available [41] and for which plants can compete.

Here, we report an experiment in which we used 15N pool-

dilution to make direct measurements of plant competition for N as

an explicit test of alternative theories about variation in the

strength and role of competition in relation to environmental

conditions. Tilman and others [1,42–44] have argued that the

strength of competition remains constant across productivity

gradients, but that the key resources for which plants compete

shift from being located below-ground under unproductive,

nutrient-poor conditions, to above-ground when plants compete

for light in productive, nutrient-rich habitats. By inference, this

suggests that competition for nutrients is stronger in unproductive

habitats and weaker in fertile soils. By contrast, Grime and others

[2,45,46] argued that competition is less important as an ecological

force in more severe environments where plants’ ecological success

is determined more by genotypic and phenotypic responses to

environmental conditions that restrict growth [4] and competition

will be stronger under conditions of higher productivity [4].

Despite efforts to conceptually reconcile these alternative theories

[47], the lack of a means to measure the process of competition

directly and unequivocally has contributed to the enduring

impasse. In the study reported here, we measured interspecific

competition directly in terms of N capture. We used a classic pot-

based experiment with contrasting levels of two types of

environmental severity: soil resource supply (low vs. high N

availability); and climatic (lowland vs. upland locations). We

measured competition directly as the separate, simultaneous

uptake of available soil NO3
2 or NH4

+, and indirectly as mean

relative growth rate (RGR) over a 14-d 15N-labelling period and as

final biomass at the end of that period, thus enabling us to

compare the direct and indirect estimates. Using this approach

with two species common in UK grassland systems, Dactylis

glomerata L. and Plantago lanceolata L., we tested two alternative

hypotheses: 1. Interspecific competition increases with reduced soil

fertility (see [1]). This will be manifested as smaller uptake of N by

competing plants, relative to that by isolated plants, in the low

fertiliser conditions compared with the high fertiliser treatments

(Fig. 1A); 2. Competition is stronger under conditions of higher soil

N and this effect will be the same at both climatically severe and

benign environments, although overall uptake of N will be reduced

under harsher conditions (see [4]). This will be shown as greater

competition for N (a higher negative effect of the impact of

neighbours) at the benign lowland site and in the high fertiliser

treatment compared to the more climatically severe upland

location (Fig. 1B). The novel 15N pool-dilution approach we used

allowed us to distinguish between these possibilities.

Results

For NO3
2 (Fig. 1C), there was no difference in uptake by

isolated plants due to fertiliser level (mean per capita N uptakes of

5.6660.5 for low fertiliser and 5.7860.59 mg g21 d21 for high

fertiliser). However, uptake by competing plants in low fertiliser

pots was greater (5.4360.64 mg g21 d21) than those competing at

high fertiliser (3.1660.54 mg g21 d21). There was no difference

in uptake between isolated and competing plants (i.e. no

competition for NO3
2) in low fertiliser pots, but in the pots with

high fertiliser there was strong NO3
2 competition. The ANCOVA

test on uptake of NO3
2 showed a strongly significant fertiliser
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effect (p , 0.001), indicating a highly significant increase in the

strength of competition in the high compared to the low N

fertiliser treatments. In addition, there was a borderline significant

covariate * location effect (p = 0.06). This reflected the fact that,

for isolated plants, there was a smaller difference between per

capita NO3
2 uptake at the two locations (5.8560.44 mg g21 d21

at the upland site and 5.5960.65 mg g21 d21 at the lowland

location) than when Dactylis competed against Plantago (Dactylis

uptake: 4.6260.63 mg g21 d21 at the upland site and

4.1960.66 mg g21 d21 at the lowland site).

For uptake of NH4
+, at both high and low fertiliser, there was no

difference in uptake between isolated and competing plants. These

points all fell on or very close to the 1:1 line (Fig. 1D), showing that

the presence of Plantago did not affect uptake of NH4
+ by Dactylis

and that no competition for this form of N was occurring. There

was a significant fertiliser effect (p = 0.009), but this simply

reflected the greater uptake by plants growing under the high

fertiliser regime rather than any difference in the strength of

competition. This is demonstrated in Figure 1D by the similar

increased uptake of both isolated and competing plants under high

fertiliser conditions.

Uptake of NH4
+ by Dactylis was considerably greater than that

of NO3
2: 1.3–4.2 times greater for competing plants, and 1.6–2.4

times greater for isolated plants. This reflected differences in gross

rates of ammonification and nitrification, the former being 1.3 to

2.8 times larger than the latter (Table 1). Soil concentrations of

NO3
2 were less than 5% of those of NH4

+ (Table 1).

Over the 14-d period during which competitive N uptake was

measured, relative growth rate (RGR) was actually greater for

competing than for isolated plants, except for plants in low

fertiliser pots at the upland site (Fig. 1E). There was a significant

location * fertiliser interaction, reflecting that there was little

difference in RGR between competing plants at the two locations

under high fertiliser conditions, whereas there was a large

difference in RGR between locations under the low fertiliser

regime with RGR of competing plants being considerably lower at

the upland site. The covariate (isolated Dactylis) * fertiliser

interaction, was due to the relative difference between RGR of

isolated and competing plants. For isolated plants, there was only a

small difference in RGR between high and low fertiliser regimes.

In terms of their aboveground biomass, there was no evidence

to suggest that plants at the two sites were at different stages of

growth. As expected, plants were smaller at the time of the first

harvest (t1), 1 d after labelling, than at the second (t14), 14 d after

labelling. Those receiving high fertiliser were larger than those that

received low fertiliser, and isolated plants were bigger than

competing plants (Fig. 1F). The significant location * fertiliser

interaction reflected the fact that under conditions of low fertiliser

there was no difference in biomass due to the location at which

plants grew, but under the high fertiliser regime plants at the

lowland site had greater biomass than those that grew at the

upland site. The location * harvest interaction showed that at the

first harvest there was less difference between the biomass of plants

at the two locations compared with the second harvest, suggesting

that plants growing at the more benign location were able to

produce extra biomass at this part of the growing season.

Discussion

Our first hypothesis was based on Tilman’s theory that plant

competition is stronger at low levels of fertiliser compared with

high fertiliser, and we expected greater competition under low

fertiliser conditions [1]. There was a strong effect of N availability

on NO3
2 uptake by competing plants (Fig. 1C), but the direction

of the effect was opposite to that predicted: stronger competition

for NO3
2 occurred in pots with high fertiliser than with low. This

evidence contradicts the first hypothesis. It does, however, partly

support our second hypothesis that competition is greater at high

fertiliser levels [4]. NH4
+ uptake was greater under high fertiliser

conditions compared with low (significant fertiliser effect; Fig. 1D),

but there was no difference in the strength of competition for

NH4
+ between the fertiliser treatments or sites. This experiment

appears to confirm the importance of soil fertility as a key driver in

plants’ competitive interactions, although those interactions were

Table 1. Concentrations of NH4
+ and NO3

2 in soil and gross rates of nitrification and ammonification.

Location/fertiliser treatment
NH4

+ concentration
(mg g21 dry soil)

NO3
2 concentration

(mg g21 dry soil)
Nitrification
(mg g21 dry soil d21)

Ammonification
(mg g21 dry soil d21)

Upland site, high fertiliser 4.49260.587 0.00360.000 0.12560.02 0.15860.02

Upland site, low fertiliser 1.76560.202 0.00360.025 0.08860.01 0.24660.01

Lowland site, high fertiliser 1.32560.232 0.04060.026 0.09560.01 0.19760.01

Lowland site, low fertiliser 0.81060.468 0.00760.003 0.12860.02 0.20360.01

Values are means 61 SE. Soil N concentrations were averaged across t1 and t14. Nitrification and ammonification rates are calculated between t1 and t14 and thus
represent rates over the 14 days between harvests.
doi:10.1371/journal.pone.0029413.t001

Figure 1. Measures of competition using direct and indirect approaches. (A) Schematic showing results predicted for hypothesis 1 (plant
competition for N will increase under conditions of reduced soil nutrient availability); (B) Schematic showing results predicted for hypothesis 2 (plant
competition for N will be weaker in a more climatically severe upland environment, and under lower nutrient availability); (C) Uptake of NO3

2; (D)
Uptake of NH4

+; (E) RGR over 14 d; (F) Biomass at final harvest. N uptake, biomass and RGR of Dactylis glomerata when competing against Plantago
lanceolata (vertical axes) are plotted against the corresponding measurements for Dactylis when growing in isolation (horizontal axes). Symbols
indicate either lowland (triangle) or upland (diamond) locations, under conditions of low (shaded) or high N availability (open). Plot f uses the same
notation, but in addition, results for the first and second harvests are separately indicated using t1 and t14, respectively. For plot c, the model
explained 40% of the observed variation (4, 31 df); for plot d, 35% (3, 18 df); for plot e, 28% (5,67 df); and for plot f, 62% (6, 150 df). Error bars show 1
standard error of the mean. Dotted lines show the line of equality, i.e. identical uptake, biomass or RGR for competing and isolated Dactylis; the
further points fall away from the line of unity, the greater the strength of plant interaction (competition below the line, facilitation above) , i.e. the
relative difference between uptake, biomass or RGR of isolated and competing plants is greater. Significant results from ANCOVA tests are shown on
each plot.
doi:10.1371/journal.pone.0029413.g001

Competitive Resource Capture in Plants

PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e29413



not consistent for the two soil N sources, NO3
2 and NH4

+ (Fig. 1C,

1D). Climatic severity had no impact on strength of competition

for either NO3
2 or NH4

+ with only a borderline significant

covariate * location effect for NO3
2 uptake. Clearly, when

competition is measured directly as simultaneous capture of

specific resources, the complexity of the resulting responses is

much greater than predicted by existing ecological theories. In the

case of competition for soil N, some of this complexity likely arises

from the microbial and physico-chemical processes by which N

ions are made available in the soil.

Differences in gross mineralisation rates (Table 1) can explain

the larger uptake of NH4
+ compared with NO3

2 during this

experiment, but there were also large differences in the patterns of

NO3
2 and NH4

+ uptake. These were probably caused by a

combination of the amounts of each ion available to the plants and

their respective mobilities in soil, which in turn were influenced by

the experimental treatments. NO3
2 diffuses about ten times faster

in soil than NH4
+ [48] and is therefore more easily accessible to

plants compared with NH4
+ at any given root length density [49].

The net availabilities of the ions also depend on the rates at which

they are produced and consumed, and by their resulting

concentrations in the soil solution. Soil NH4
+ concentrations,

gross ammonification rates and amounts of NH4
+ taken up during

the experiment were greater than for the corresponding NO3
2

figures (Fig. 1C, 1D; Table 1). Therefore, NH4
+ was probably the

more plant-available form of N during the experiment. But at the

time of measurement, the capture by competing plants of NH4
+

was barely distinguishable from that by isolated plants (Fig. 1D),

even though large accumulated differences in biomass production

between competing and isolated plants had been established and

were associated with both fertiliser supply and location (Fig. 1F).

We conclude on the basis of this evidence that the decisive period

of competition for NH4
+ had occurred before the time of 15N

labelling and measurement.

We were able to consider N content (and thus N uptake [36]) in

only above-ground biomass. By applying allometric modelling in

an experiment with many frequent, destructive harvests, we have

shown [50] that when Dactylis competes against Plantago, its

root:shoot biomass increases considerably during the growing

season, whereas that of Plantago remains relatively constant. That

response can be decisive in determining the superiority of Dactylis

over Plantago over timescales of several weeks as it is associated with

greater capture of N and, presumably, other nutrients. But

because we were unable to separate roots in this experiment, we

cannot evaluate the extent to which that response might have

accounted for the effects of species or location on NH4
+ and NO3

2

uptake seen in Figure 1.

As explained in the Introduction, the great (and largely

unexploited) advantage of 15N pool-dilution techniques in plant

competition studies is that they allow the competitive capture of

specific soil N pools to be estimated directly, simultaneously and

unequivocally. However, they can realistically be applied only over

temporal windows 10–20 d long. Characterising the whole

competitive process in this way would demand 15N-labelling and

harvesting successive cohorts of competing and isolated plants.

Such experiments would be of truly daunting size, and require a

research budget to match. For these reasons, 15N pool-dilution

approaches are always likely to be limited to certain phases of the

competitive process, rather than be applied to an entire

competitive trajectory (cf. [50]). The results presented in Figure 1

are therefore quantitative snapshots of the competitive interactions

between Dactylis and Plantago in terms of their NH4
+ and NO3

2

capture, but which, even so, are the first such snapshots to be

obtained for any combination of competing plants. We would

argue that because the vast majority of plant competition

experiments are restricted to aboveground biomass data collected

at only one harvest, they, too, provide only snapshots of the

interactions between neighbours. Our results have the advantage

of directly quantifying competition for N over a defined time-

period and in terms of resource capture, not biomass production.

The lack of correspondence between competition for N and

final above-ground biomass of plants was unsurprising, given that

biomass at the final harvest represents the net accumulation of

resources up to the time of harvest and not just the resources

(including N) captured over the preceding 14 d. However, the

complete absence of any correlation between RGR and N uptake

is more surprising, given that these were measured over the same

14-d period. The biomass of isolated plants was greater than that

of competing ones (Fig. 1F). But, perhaps surprisingly, competing

plants were generally growing more quickly than isolated ones

during that period (Fig. 1E). From this experiment we cannot

determine the causes of these disparities, but suspect that they are

not the result of a genuine facilitative effect. Rather they

probably reflect transient growth dynamics, the trajectories of

which are masked by the temporal restriction of our study. If so,

this highlights the need to consider plants’ competitive interac-

tions as dynamic processes. Most plant competition experiments,

including those cited by Grime and Tilman in support of their

respective theories, are essentially ‘static’ in that their outcomes

were measured at only one point in time. This is despite the

extensive literature on density-dependent growth and mortality

in intraspecific communities that demonstrates that plants’

competitive interactions are temporally dynamic [11]. These

results presented here clearly highlight the fact that it is possible

to come to quite different conclusions about the results of

competition experiments, depending on the variable being

measured.

Conclusion
We found no evidence to support Tilman’s theory of plant

competition, but neither do our results fully support Grime’s.

These theories do not account for the complexity of the processes

that underlie resource supply and capture by competitors. When

these processes are measured directly, as in this study, important

limitations of the theories are revealed. This is the first study to

use an unequivocally direct measure of resource capture to

examine the impact of two types of environmental drivers

(resource availability and climate) on plant competition, and to

compare direct measurements with ‘‘proxy’’ measurements such

as biomass and RGR. Although our study was restricted to a

limited window of time, we have demonstrated that this powerful

technique can be used to study competitive interactions between

plants in considerable detail and believe that this technique offers

us new insights into these processes. Furthermore, by applying

this technique we have shown that in order to further improve

our understanding of the environmental regulation of plant

competition, theories are required that are based on the reality of

resource dynamics, incorporating both temporal variation in the

availability and use of resources, as well as differences in their

kinetics. These techniques now need field-testing, using mature

plants to confirm their validity in more natural systems. In

addition, it is important to widen our perspective on plant

competition by examining its temporal dynamics (cf. [50])

although isotope pool-dilution will probably not be an appropri-

ate means to do this routinely. We can then begin to understand

how the impacts of the environment on the process of competition

are translated into outcomes of competition and ultimately into

demographic measures of plant success.

Competitive Resource Capture in Plants
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Materials and Methods

Plants
We used Dactylis glomerata L. a perennial, tussock-forming grass

and Plantago lanceolata L. a perennial, rosette-forming forb. Both are

common, native grassland plants in the British Isles that often

grow together [51]. Importantly, they are both competitive,

responsive to nutrients and have a similar rooting pattern [52],

altitudinal range and phenology [11,53,54].

Locations
The experiment was split between a lowland site (Aberdeen,

Scotland, 57u089N, 2u099W, elevation 78 m), and an upland site

(Braemar, Scotland, 56u59N, 3u299W, elevation 340 m), the

locations are approximately 80 km apart. The upland site

represented the practical altitudinal limit for our grassland species

as above this altitude the habitat changes to open moorland.

Table 2 shows average weather conditions at the two sites between

1960 and 2000 from 1 April to 31 August (the months over which

our experiment ran in 2009): although there is little difference in

precipitation or average maximum temperatures, the upland site

has considerably lower average minimum temperatures. To

provide information on environmental conditions specific to the

year of the experiment (2009), air (screened) and soil temperatures

(5 cm depth) at both sites were recorded for the duration of the

experiment (CR800 Data Logger, Campbell Scientific, Loughbor-

ough, UK). Precipitation was not recorded at either site as the pots

of plants were watered when necessary.

Experimental procedure
Plants were germinated from locally-collected Dactylis glomerata

and Plantago lanceolata seed the previous autumn (2008). Seedlings

were over-wintered in an unheated greenhouse so that plants

would be of a sufficient size for early transplantation into pots at

each site, enabling them to be in situ as soon as weather conditions

allowed growth. Young plants were transplanted into

15615620 cm pots (capacity 3.5 l) and immediately placed at

the field sites on 30 March 2009 (lowland site) and 9 April 2009

(upland site). Pots at both locations contained sieved, free-draining,

N-deficient sandy loam, from the Countesswells series, pH 6.1.

Sufficient P and K was added (30 mg g21 dry soil) to ensure that

these were not growth-limiting. Figure 2 shows the treatment

combinations. We added NH4NO3 to half the pots to raise the

concentration of extractable inorganic N (NH4
+-N and NO3

2-N)

from 3 mg g21 (‘low’ N treatment) to 80 mg g21 dry soil (‘high’ N

treatment); determination of soil N concentrations is described

below. High fertiliser pots received a further three equal additions

of NH4NO3 totalling 240 mg N g21 dry soil, and low fertiliser pots

received a total of 120 mg N g21 dry soil during the experiment.

Each pot was planted with either one Dactylis plus one Plantago

growing together, or a single Dactylis. Roots were not separated,

but mesh screens prevented one plant from over-topping the other

so plants should have not been competing for light [14]; screens

were oriented N-S and plant identity to the east and west of the

screen was assigned randomly, as were the locations of plants in

the isolated pot treatments.

Each of 6 replicate blocks at each location (all with identical E-

W block orientation) contained two full sets of treatments (plant

combination, fertiliser level, 15N-label and time of harvest) in a

fully factorial design, arranged randomly within each block. There

Table 2. Weather conditions at the lowland and upland sites, 1960–2000, between 1 April and 31 August each year.

Location Total precipitation (mm) Maximum temperature (C) Minimum temperature (C)

Lowland site 291 (140–507) 14.3 (13.3–15.7) 7.5 (6.8–8.4)

Upland site 296 (125–450) 14.6 (13.3–16.4) 5.18 (4.2–6.3)

Values are means (ranges in parentheses).
doi:10.1371/journal.pone.0029413.t002

Figure 2. Schematic showing how pots were paired and the
different treatments (identical at each location). At each site
there were 12 replicates of each treatment combination, arranged with
2 replicates in each block. Pots had a mesh screen which was oriented
N-S, with the identity of plant on the east or west of the mesh being
randomly selected; similarly with the isolated pots, the plant was
randomly assigned to east or west position. Plants received high or low
fertiliser, NH4

+ or NO3
2 label and were harvested at t1 or t14.

doi:10.1371/journal.pone.0029413.g002
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were a total of 192 pots at each site. For pool-dilution calculations

[36], each pot was ‘paired’ with an identical pot receiving the same
15N label, but which was harvested 14 days after labelling. Within

blocks, each of these pairs of competition pots were also paired

with a corresponding pair of isolated plant pots for data analysis

[55]. Plants at both sites were enclosed in mesh fruit cage to

prevent herbivory. Pot sides were covered in silver foil to minimise

heat gain by the soil, watered as necessary, and kept weed-free. In

order to avoid the effects of time being confounded with other

effects of environmental severity, we aimed to harvest plants at a

similar developmental point. Weather records for both sites

suggested the upland site would be approximately 3 weeks behind

the lowland site in terms of air growing degree-days (GDD; a key

determinant of plant development) and thus we anticipated that

the plants at the two locations – despite having their respective

harvests four weeks apart - would be at a similar developmental

stage at the time of harvest; thus we calculated GDD to check on

the growing conditions that plants at both sites had experienced up

to the time of their harvests.

15N pool-dilution technique
This technique, including its theoretical basis, calculations and

assumptions, is described fully elsewhere [36,37]. It allows the

uptake of total N by plants from a 15N-labelled soil N pool to be

calculated over a defined time period and not, crucially, of only

the 15N-tracer, as explained in the Introduction. The essential

steps are, briefly: (1) measure the concentrations and background
15N abundances of plant-available soil N pools (typically NH4

+

and NO3
2); (2) add 15N-enriched NH4

+ or NO3
2 to the soil; (3)

measure initial concentrations and 15N abundances of the soil N

pools after 1 d; (4) repeat these measurements after a further 10–

20 d; (5) from these, derive gross ammonification and nitrification

rates over this period; (6) use these rates to estimate the mean 15N

excess abundances of the NH4
+ and NO3

2 pools during this

period. These are the best practical approximations to the source
15N values to which plants have had access, reflecting the

progressive 15N dilution of the soil pools by unlabelled products

of ammonification or nitrification, assuming zero-order kinetics.

The estimation of mean pool 15N abundances during the labelling

period is the key feature of the pool-dilution approach and which

distinguishes it from simple isotope labelling methods [31–34,39];

(7) use mean pool abundances to derive NH4
+ uptake as Nx/a,

where N and x are, respectively, the initial N content and atom %

excess 15N of 15NH4
+-labelled plants, and a the mean 15N excess of

soil NH4
+ during the labelling period; (8) calculate NO3

2 uptake

similarly using corresponding data from separate 15NO3
2-labelled

pools and plants. This method requires four sets of pots all

receiving the same experimental treatments (in this case,

combination of plants, location of pots and fertiliser level; see

Fig. 2). Two sets of the pots are labelled with NH4
15NO3 and two

sets with15NH4NO3. Unlike conventional 15N tracer studies, it is

necessary to allow an ‘incubation period’ after adding 15N to allow

thorough mixing of the labelled solution through the soil [37], so

the first harvest (t1) takes place 24 h after labelling, at which time

one set of NH4
15NO3 –labelled pots and one set of 15NH4NO3 –

labelled pots are harvested. This leaves one set of NH4
15NO3 –

labelled pots and one set of 15NH4NO3 –labelled pots which are

harvested 14 d after labelling (t14) to allow sufficient time to detect

changes in plant biomass and total N content. Harvesting 14 d

post-labelling is within the timeframe to successfully estimate

NO3
2 and NH4

+ uptake by Lolium perenne (perennial rye-grass)

[36], but longer than that recommended for the estimation of only

gross N mineralisation [37]. There is, therefore, some risk of small

errors in estimating gross rates due to remineralisation of microbial

15N, but these errors would have been spread equally across

treatments and would not have biased statistical comparisons.

Therefore, a 14-d labelling period was a practical compromise.

After 98 days in situ, on 6 July 2009, pots at the lowland site were

labelled with 15 mg of labelled NH4NO3 at a 15N enrichment of

99 atom %. The label, in 250 ml of water, was watered onto the

soil surface of each pot to ensure uniform distribution throughout

the soil, taking care to avoid contacting leaves. Half the pots were

harvested 24 h later (t1), and the remaining pots were harvested

14 d later (t14), according to the protocol described above. Pots as

the upland site were labelled on 3 August 2009, after 116 days in

situ, four weeks after labelling the lowland pots. This time

difference was to allow plants at the two sites to reach

approximately similar developmental stages (see above and

Fig. 1F). Labelling and harvesting were carried out in the same

way at both sites.

Harvests and sample analysis
The following procedures were undertaken at each harvest. In

the lab, root-free soil samples of c. 70 g wet weight (sub-sampled

from c. 500 g of soil taken from the pots), were incubated at room

temperature for 1 h before extracting NH4
+ and NO3

2 using 2M

KCl. After shaking, extractions were filtered and the extract was

immediately frozen. NH4
+ and NO3

2 concentrations of soil

extracts were measured colorimetrically (Konelab Aqua 20,

Thermo, Hemel Hempstead, UK).

Ideally, the intermingled roots of competing plants should be

separated and quantified to obtain a full picture of the interaction

that has occurred between them, but this is rarely possible in

practice [50,56], which is why almost all plant competition

experiments consider only above-ground responses. Root separa-

tion is possible with some species’ assemblages that happen to have

morphologically distinct roots [39], or by using differences in 13C

natural abundance if the competitors are a combination of C3 and

C4 species [57,58], but neither is the case with Dactylis and Plantago.

Consequently, biomass and N/15N contents of only above-ground

parts of the competing plants could be estimated reliably in this

experiment. Above-ground biomass (mainly leaves) of each plant

was separated from roots at the soil surface, oven-dried (80 C) to

constant weight and weighed. Total N and 15N contents of

harvested biomass samples were determined by isotope ratio mass

spectrometry (ANCA-NT isotope ratio mass spectrometer with

ANCA-NT Solid/Liquid Preparation Module; Europa Scientific

Ltd, Crewe, UK). At the first harvest, roots from 10 randomly-

selected pots were treated and stained [59] for determination of

arbuscular mycorrhizal (AM) colonisation [60] because plants’

competitive interactions can be influenced by AM fungi [61]. No

colonisation was found and the remainder of the plants were

assumed to be AM-free.

Soil NH4
+ and NO3

2 were prepared for isotopic analysis [62].

This is a two-part process in which the NH4
+ and NO3

2 moieties

are serially converted into NH3 using different reagents so that N

extracted from soil is in a form that can be isotopically analysed.

First 15NH3 is evolved from 15NH4NO3 and trapped, then the

same soil extract is treated to evolve 15NH3 from NH4
15NO3

which is again trapped. Analyses of sub-samples of each extract

revealed very low N concentrations (,1.5 mg l21), so to ensure

sufficient N for detection by mass spectrometry, 40 mg N as an

unlabelled NH4NO3 solution was added to each sample. Extracts

were sealed in gas-tight jars following addition of 0.7 g MgO and

two Whatman No 1 filter paper discs (5 mm diameter), each

acidified with 5 ml 2.5M KHSO4 suspended from the lid of the jars

to trap NH3 evolved from the solutions. After one week, the jars

were opened and the discs removed and dried in a desiccator, then
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analysed for 15N. Diffusions from soils labelled with 15NH4NO3

were then completed. For soils labelled with NH4
15NO3, and thus

requiring the second diffusion step, two new acidified discs were

placed in the lid of these jars which were then resealed, following

addition of 0.2 g MgO and 0.4 g Devarda’s alloy and then treated

as described above.

Calculations and statistical analyses
The pool-dilution method (see above) requires pots of plants to

be paired to provide data for calculations for each of the two

harvests, t1 and t14. These paired plants from the destructive

harvests were also used to calculate mean aboveground RGR

(between t1 and t14, for direct comparison between N uptake and

RGR over the same time period) using the standard method [55]:

RGR~
ln(biomass t14){ln(biomass t1)

t14{t1

ð1Þ

Dactylis does not grow when temperatures are below 5.6uC [53] so

growing degree days (GDD) were calculated as:

GDD~
max daily tempzmin daily tempð Þ

2
{5:6 ð2Þ

Cumulative GDD up to the harvests at t14 was calculated by

adding GDD for each day, when GDD.0. Cumulative GDD for

air temperatures was 837 at the lowland site and 667 at the

upland; and for soil temperatures it was 845 and 996 respectively,

perhaps indicating differences in radiant heat and air temperature

between the two sites.
15N enrichments of the acidified discs were corrected to account

for the additional NH4NO3 added using a mixing equation [63].
15N-pool dilution calculations followed procedure A of Barra-

clough [36]: 15N-pool dilution calculations required that the

above-ground biomass at the second harvest was greater than that

at the first. Given the complexity of the experimental design and to

prevent any bias, pots had to be paired at the start of the

experiment and any alteration of this at harvest to take into

account differences in plant sizes would have unbalanced the other

treatments. Although plants were generally larger at the second

harvest, variability between paired pots meant that this was not

always the case and resulted in the loss of some data. In addition,

24 NH4
+ and 1 NO3

2 samples were also lost during analysis.

Pairing the dependent variable with its covariate by block in the

data analysis resulted in further loss of data if either covariate or

dependent variable had been lost. This resulted in sample sizes of

36 (out of a possible 48 data points) for uptake of NO3
2, 22 (out of

a possible 48 data points) for NH4
+ uptake, 73 (out of a possible 96

data points) for RGR and 159 (out of a possible 192) for biomass.

For all tests, residuals were tested for normality and hetero-

scedasticity and transformed where required. Block was tested

separately against each dependent variable but showed no

significant effects (P.0.05).

We analysed the data using uptake of NO3
2 and NH4

+, RGR

and above-ground biomass of Dactylis plants both in competition

and in isolation. To test the competitive effect of Plantago on

Dactylis (note that this is the same as the competitive response of

Dactylis to Plantago) at different locations and fertiliser levels, we ran

separate ANCOVA tests for uptake of each ion, RGR and

biomass using Dactylis when growing with a neighbouring Plantago

as the response variable, and Dactylis growing alone (paired from

the same block) as the covariate; location and fertiliser served as

fixed effects. Using ANCOVA in this way allowed us to test for the

effects of competition under the different treatments, whilst taking

into account any differences in N uptake, biomass or RGR due to

those different treatments [24] but avoiding the use of statistically

problematic competition indices [22]. When analysing above-

ground biomass, harvest date (i.e. t1 or t14) was also included as a

fixed effect.

These tests were run as linear models in R [64] and simplified

by comparing the explanatory power of models from which non-

significant interaction terms had been removed [65]. Models

included all possible two-way interactions. Significant covariate *

treatment interactions indicate that the slopes of the regression

lines are not homogeneous. Whilst this is generally considered to

be a violation of the assumptions of ANCOVA, such interactions

show that the treatments affect the relationship between the

dependent variable and its covariate and these effects can be of

great interest [66].

In relation to this study, significant main effects need not

necessarily reflect differences in competition but significant

interactions are of greater interest: fertiliser * location interactions

show that plants do not respond to the addition of fertiliser in the

same way at both locations; a covariate * location interaction

shows that, given a change in the response variable in the covariate

(isolated plant) the competing plants do not respond in the same

way at the two sites. Similarly, a significant covariate * fertiliser

interaction shows that the covariate (isolated plant) has responded

differently from the competing plants to the fertiliser treatment.

Where there are significant covariate interaction terms, it is

difficult to interpret main effects as the interpretation of these will

change according to the value of the covariate [66] so, where these

are present, we concentrate on the interaction terms rather than

significant main effects. Results are presented using treatment

contrasts to overcome issues of ordering variables within each

model.

The data were plotted (Fig. 1) to show NO3
2 and NH4

+ capture

by Dactylis when growing with a neighbour (vertical axis) and when

growing in isolation (horizontal axis). This shows clearly the effect

of a neighbouring plant: where data lie along the 1:1 line, there is

no difference in performance (however measured) between plants

with a neighbour and those growing in isolation, demonstrating

that there is no effect of competition. When data are below the 1:1

line, plants growing with a neighbour perform worse than isolated

plants, showing that competition is occurring. Conversely, if data

fall above the 1:1 line, competing plants out-perform their isolated

counterparts (i.e., facilitation, not competition, is occurring [67]).

The further the points fall below the 1:1 line, the greater the effect

of a competitor (i.e., the relative difference between competing and

isolated plants becomes larger); these differences are illustrated by

the schematics in Figure 1A, 1B. As noted above, using statistical

analyses alone to interpret these data could be misleading as, for

example, a significant fertiliser effect need not necessarily be due to

differences in competition, simply that different amounts of N were

taken up, in which case all the points would fall along the 1:1 line.

Similarly, it is necessary to check that significant interaction terms

in the model relate to the occurrence of competition.

The schematic Figure 1A and 1B show the results we expected

depending on whether hypotheses 1 or 2, respectively, was correct.

Hypothesis 1 is based on Tilman’s theory that competition is

stronger when resources are scarce (e.g., under low fertiliser

conditions). Hence, in Figure 1A we expected the data for N

uptake under high fertiliser conditions to lie at the top of the oval

and uptake under low fertiliser at the bottom end. We did not

anticipate different responses from plants growing at the different

locations, as resource supply is seen as the primary factor

controlling competition. We did, however, expect greater uptake

by all plants (regardless of competitive effects) under the high
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fertiliser regime, and so the oval is slightly tilted with respect to the

1:1 line. Hypothesis 2 is based on the expectation from Grime’s

model that competition is less important relative to other factors

under harsher conditions. In Figure 1B, the ‘benign’ end of the

oval is tilted further away from the 1:1 line. Although we expected

all plants to take up absolutely more N under better growing

conditions at the benign site, competition is also expected to be

stronger here, and so there is a greater deviation away from the 1:1

line. In addition, we expected competition to be stronger under the

high fertiliser compared with the low fertiliser treatments.
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