111 research outputs found

    Ctr2 Links Copper Homeostasis to Polysaccharide Capsule Formation and Phagocytosis Inhibition in the Human Fungal Pathogen Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans is a human opportunistic fungal pathogen responsible for ∼1/3 of HIV/AIDS deaths worldwide. This budding yeast expresses a polysaccharide capsule necessary for virulence. Capsule production inhibits phagocytosis by macrophages. Here we describe results that link copper homeostasis to capsule production and the inhibition of phagocytosis. Specifically, using Agrobacterium-mediated insertional mutagenesis, we identified an insertion in the promoter region of the putative copper transporter-encoding gene CTR2 that results in reduced expression of CTR2 and increased phagocytosis by murine RAW264.7 macrophages. The mutant also displayed sensitivity to copper starvation and defects in polysaccharide capsule production and melanization. These defects were all reversed by genetic correction of the promoter insertion by homologous targeting. Several melanization-defective mutants identified previously, those in the RIM20, RIM101, and VPS25 genes, also display sensitivity to copper starvation, reduced capsule production and increased phagocytosis. Together these results indicate a previously undescribed link between copper homeostasis to polysaccharide capsule production and phagocytosis inhibition in Cryptococcus neoformans

    Abnormal X : autosome ratio, but normal X chromosome inactivation in human triploid cultures

    Get PDF
    BACKGROUND: X chromosome inactivation (XCI) is that aspect of mammalian dosage compensation that brings about equivalence of X-linked gene expression between females and males by inactivating one of the two X chromosomes (Xi) in normal female cells, leaving them with a single active X (Xa) as in male cells. In cells with more than two X's, but a diploid autosomal complement, all X's but one, Xa, are inactivated. This phenomenon is commonly thought to suggest 1) that normal development requires a ratio of one Xa per diploid autosomal set, and 2) that an early event in XCI is the marking of one X to be active, with remaining X's becoming inactivated by default. RESULTS: Triploids provide a test of these ideas because the ratio of one Xa per diploid autosomal set cannot be achieved, yet this abnormal ratio should not necessarily affect the one-Xa choice mechanism for XCI. Previous studies of XCI patterns in murine triploids support the single-Xa model, but human triploids mostly have two-Xa cells, whether they are XXX or XXY. The XCI patterns we observe in fibroblast cultures from different XXX human triploids suggest that the two-Xa pattern of XCI is selected for, and may have resulted from rare segregation errors or Xi reactivation. CONCLUSION: The initial X inactivation pattern in human triploids, therefore, is likely to resemble the pattern that predominates in murine triploids, i.e., a single Xa, with the remaining X's inactive. Furthermore, our studies of XIST RNA accumulation and promoter methylation suggest that the basic features of XCI are normal in triploids despite the abnormal X:autosome ratio

    Factors that affect proliferation of Salmonella in tomatoes post-harvest: the roles of seasonal effects, irrigation regime, crop and pathogen genotype

    Get PDF
    MAIN OBJECTIVES: Fresh fruits and vegetables become increasingly recognized as vehicles of human salmonellosis. Physiological, ecological, and environmental factors are all thought to contribute to the ability of Salmonella to colonize fruits and vegetables pre- and post-harvest. The goal of this study was to test how irrigation levels, fruit water congestion, crop and pathogen genotypes affect the ability of Salmonella to multiply in tomatoes post-harvest. EXPERIMENTAL DESIGN: Fruits from three tomato varieties, grown over three production seasons in two Florida locations, were infected with seven strains of Salmonella and their ability to multiply post-harvest in field-grown tomatoes was tested. The field experiments were set up as a two-factor factorial split plot experiment, with the whole-plot treatments arranged in a randomized complete-block design. The irrigation treatment (at three levels) was the whole-plot factor, and the split-plot factor was tomato variety, with three levels. The significance of the main, two-way, and three-way interaction effects was tested using the (type III) F-tests for fixed effects. Mean separation for each significant fixed effect in the model was performed using Tukey's multiple comparison testing procedure. MOST IMPORTANT DISCOVERIES AND SIGNIFICANCE: The irrigation regime per se did not affect susceptibility of the crop to post-harvest proliferation of Salmonella. However, Salmonella grew significantly better in water-congested tissues of green tomatoes. Tomato maturity and genotype, Salmonella genotype, and inter-seasonal differences were the strongest factors affecting proliferation. Red ripe tomatoes were significantly and consistently more conducive to proliferation of Salmonella. Tomatoes harvested in the driest, sunniest season were the most conducive to post-harvest proliferation of the pathogen. Statistically significant interactions between production conditions affected post-harvest susceptibility of the crop to the pathogen. UV irradiation of tomatoes post-harvest promoted Salmonella growth

    P. brasiliensis virulence is affected by SconC, the negative regulator of inorganic sulfur assimilation

    Get PDF
    Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37°C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis.J.F.M. and J.G.R. were supported by a PhD grant from Fundacao para a Ciencia e Tecnologia (FCT). This work was supported by a grant from FCT (PTDC/BIA-MIC/108309/2008). M. Sturme. and M. Saraiva are Ciencia 2008 fellows. The authors would also like to thank FAPESP (Fundacao para Amparo a Pesquisa do Estado de Sao Paulo) and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Endothelial Progenitor Cells Predict Cardiovascular Events after Atherothrombotic Stroke and Acute Myocardial Infarction. A PROCELL Substudy.

    Get PDF
    Introduction: The aim of this study was to determine prognostic factors for the risk of new vascular events during the first 6 months after acute myocardial infarction (AMI) or atherothrombotic stroke (AS). We were interested in the prognostic role of endothelial progenitor cells (EPC) and circulating endothelial cells (CEC). Methods: Between February 2009 and July 2012, 100 AMI and 50 AS patients were consecutively studied in three Spanish centres. Patients with previously documented coronary artery disease or ischemic strokes were excluded. Samples were collected within 24h of onset of symptoms. EPC and CEC were studied using flow cytometry and categorized by quartiles. Patients were followed for up to 6 months. NVE was defined as new acute coronary syndrome, transient ischemic attack (TIA), stroke, or any hospitalization or death from cardiovascular causes. The variables included in the analysis included: vascular risk factors, carotid intima-media thickness (IMT), atherosclerotic burden and basal EPC and CEC count. Multivariate survival analysis was performed using Cox regression analysis. Results: During follow-up, 19 patients (12.66%) had a new vascular event (5 strokes; 3 TIAs; 4 AMI; 6 hospitalizations; 1 death). Vascular events were associated with age (P = 0.039), carotid IMT≥0.9 (P = 0.044), and EPC count (P = 0.041) in the univariate analysis. Multivariate Cox regression analysis showed an independent association with EPC in the lowest quartile (HR: 10.33, 95%CI (1.22-87.34), P = 0.032] and IMT≥0.9 [HR: 4.12, 95%CI (1.21-13.95), P = 0.023]. Conclusions: Basal EPC and IMT≥0.9 can predict future vascular events in patients with AMI and AS, but CEC count does not affect cardiovascular risk

    Transcriptional responses to glucose in Saccharomyces cerevisiae strains lacking a functional protein kinase A

    Get PDF
    Background The pattern of gene transcripts in the yeast Saccharomyces cerevisiae is strongly affected by the presence of glucose. An increased activity of protein kinase A (PKA), triggered by a rise in the intracellular concentration of cAMP, can account for many of the effects of glucose on transcription. In S. cerevisiae three genes, TPK1, TPK2, and TPK3, encode catalytic subunits of PKA. The lack of viability of tpk1 tpk2 tpk3 triple mutants may be suppressed by mutations such as yak1 or msn2/msn4. To investigate the requirement for PKA in glucose control of gene expression, we have compared the effects of glucose on global transcription in a wild-type strain and in two strains devoid of PKA activity, tpk1 tpk2 tpk3 yak1 and tpk1 tpk2 tpk3 msn2 msn4. Results We have identified different classes of genes that can be induced -or repressed- by glucose in the absence of PKA. Representative examples are genes required for glucose utilization and genes involved in the metabolism of other carbon sources, respectively. Among the genes responding to glucose in strains devoid of PKA some are also controlled by a redundant signalling pathway involving PKA activation, while others are not affected when PKA is activated through an increase in cAMP concentration. On the other hand, among genes that do not respond to glucose in the absence of PKA, some give a full response to increased cAMP levels, even in the absence of glucose, while others appear to require the cooperation of different signalling pathways. We show also that, for a number of genes controlled by glucose through a PKA-dependent pathway, the changes in mRNA levels are transient. We found that, in cells grown in gluconeogenic conditions, expression of a small number of genes, mainly connected with the response to stress, is reduced in the strains lacking PKA. Conclusions In S. cerevisiae, the transcriptional responses to glucose are triggered by a variety of pathways, alone or in combination, in which PKA is often involved. Redundant signalling pathways confer a greater robustness to the response to glucose, while cooperative pathways provide a greater flexibility.BT/BiotechnologyApplied Science

    Effect of Virulence Factors on the Photodynamic Inactivation of Cryptococcus neoformans

    Get PDF
    Opportunistic fungal pathogens may cause an array of superficial infections or serious invasive infections, especially in immunocompromised patients. Cryptococcus neoformans is a pathogen causing cryptococcosis in HIV/AIDS patients, but treatment is limited due to the relative lack of potent antifungal agents. Photodynamic inactivation (PDI) uses the combination of non-toxic dyes called photosensitizers and harmless visible light, which produces singlet oxygen and other reactive oxygen species that produce cell inactivation and death. We report the use of five structurally unrelated photosensitizers (methylene blue, Rose Bengal, selenium derivative of a Nile blue dye, a cationic fullerene and a conjugate between poly-L-lysine and chlorin(e6)) combined with appropriate wavelengths of light to inactivate C. neoformans. Mutants lacking capsule and laccase, and culture conditions that favoured melanin production were used to probe the mechanisms of PDI and the effect of virulence factors. The presence of cell wall, laccase and melanin tended to protect against PDI, but the choice of the appropriate photosensitizers and dosimetry was able to overcome this resistance.Fundação de Amparo à Pesquisa do Estado de São Paulo (2010/13313–9
    corecore