587 research outputs found

    Exercise cardiovascular magnetic resonance: feasibility and development of biventricular function and great vessel flow assessment, during continuous exercise accelerated by Compressed SENSE: preliminary results in healthy volunteers

    Get PDF
    Purpose Exercise cardiovascular magnetic resonance (Ex-CMR) typically requires complex post-processing or transient exercise cessation, decreasing clinical utility. We aimed to demonstrate the feasibility of assessing biventricular volumes and great vessel flow during continuous in-scanner Ex-CMR, using vendor provided Compressed SENSE (C-SENSE) sequences and commercial analysis software (Cvi42). Methods 12 healthy volunteers (8-male, age: 35 ± 9 years) underwent continuous supine cycle ergometer (Lode-BV) Ex-CMR (1.5T Philips, Ingenia). Free-breathing, respiratory navigated C-SENSE short-axis cines and aortic/pulmonary phase contrast magnetic resonance (PCMR) sequences were validated against clinical sequences at rest and used during low and moderate intensity Ex-CMR. Optimal PCMR C-SENSE acceleration, C-SENSE-3 (CS3) vs C-SENSE-6 (CS6), was further investigated by image quality scoring. Intra-and inter-operator reproducibility of biventricular and flow indices was performed. Results All CS3 PCMR image quality scores were superior (p  0.93). During Ex-CMR, biventricular end-diastolic volumes (EDV) remained unchanged, except right-ventricular EDV decreasing at moderate exercise. Biventricular ejection-fractions increased at each stage. Exercise biventricular cine and PCMR stroke volumes correlated very strongly (r ≥ 0.9), demonstrating internal validity. Intra-observer reproducibility was excellent, co-efficient of variance (COV) < 10%. Inter-observer reproducibility was excellent, except for resting right-ventricular, and exercise bi-ventricular end-systolic volumes which were good (COV 10–20%). Conclusion Biventricular function, aortic and pulmonary flow assessment during continuous Ex-CMR using CS3 sequences is feasible, reproducible and analysable using commercially available software

    The E3 ubiquitin ligase WWP2 regulates pro-fibrogenic monocyte infiltration and activity in heart fibrosis

    Get PDF
    Non-ischemic cardiomyopathy (NICM) can cause left ventricular dysfunction through interstitial fibrosis, which corresponds to the failure of cardiac tissue remodeling. Recent evidence implicates monocytes/macrophages in the etiopathology of cardiac fibrosis, but giving their heterogeneity and the antagonizing roles of macrophage subtypes in fibrosis, targeting these cells has been challenging. Here we focus on WWP2, an E3 ubiquitin ligase that acts as a positive genetic regulator of human and murine cardiac fibrosis, and show that myeloid specific deletion of WWP2 reduces cardiac fibrosis in hypertension-induced NICM. By using single cell RNA sequencing analysis of immune cells in the same model, we establish the functional heterogeneity of macrophages and define an early pro-fibrogenic phase of NICM that is driven by Ccl5-expressing Ly6chigh monocytes. Among cardiac macrophage subtypes, WWP2 dysfunction primarily affects Ly6chigh monocytes via modulating Ccl5, and consequentially macrophage infiltration and activation, which contributes to reduced myofibroblast trans-differentiation. WWP2 interacts with transcription factor IRF7, promoting its non-degradative mono-ubiquitination, nuclear translocation and transcriptional activity, leading to upregulation of Ccl5 at transcriptional level. We identify a pro-fibrogenic macrophage subtype in non-ischemic cardiomyopathy, and demonstrate that WWP2 is a key regulator of IRF7-mediated Ccl5/Ly6chigh monocyte axis in heart fibrosis

    Prediction of photoperiodic regulators from quantitative gene circuit models

    Get PDF
    Photoperiod sensors allow physiological adaptation to the changing seasons. The external coincidence hypothesis postulates that a light-responsive regulator is modulated by a circadian rhythm. Sufficient data are available to test this quantitatively in plants, though not yet in animals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their lightsensitive proteins are thought to form an external coincidence sensor. We use 40 timeseries of molecular data to model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, the models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modelling makes this complexity explicit and may thus contribute to crop improvement

    A Functional Taxonomy of Tumor Suppression in Oncogenic KRAS-Driven Lung Cancer

    Get PDF
    Cancer genotyping has identified a large number of putative tumor suppressor genes. Carcinogenesis is a multistep process, but the importance and specific roles of many of these genes during tumor initiation, growth, and progression remain unknown. Here we use a multiplexed mouse model of oncogenic KRAS–driven lung cancer to quantify the impact of 48 known and putative tumor suppressor genes on diverse aspects of carcinogenesis at an unprecedented scale and resolution. We uncover many previously understudied functional tumor suppressors that constrain cancer in vivo. Inactivation of some genes substantially increased growth, whereas the inactivation of others increases tumor initiation and/or the emergence of exceptionally large tumors. These functional in vivo analyses revealed an unexpectedly complex landscape of tumor suppression that has implications for understanding cancer evolution, interpreting clinical cancer genome sequencing data, and directing approaches to limit tumor initiation and progression. SIGNIFICANCE: Our high-throughput and high-resolution analysis of tumor suppression uncovered novel genetic determinants of oncogenic KRAS–driven lung cancer initiation, overall growth, and exceptional growth. This taxonomy is consistent with changing constraints during the life history of cancer and highlights the value of quantitative in vivo genetic analyses in autochthonous cancer models

    Roy-Steiner equations for pion-nucleon scattering

    Get PDF
    Starting from hyperbolic dispersion relations, we derive a closed system of Roy-Steiner equations for pion-nucleon scattering that respects analyticity, unitarity, and crossing symmetry. We work out analytically all kernel functions and unitarity relations required for the lowest partial waves. In order to suppress the dependence on the high-energy regime we also consider once- and twice-subtracted versions of the equations, where we identify the subtraction constants with subthreshold parameters. Assuming Mandelstam analyticity we determine the maximal range of validity of these equations. As a first step towards the solution of the full system we cast the equations for the ππNˉN\pi\pi\to\bar NN partial waves into the form of a Muskhelishvili-Omn\`es problem with finite matching point, which we solve numerically in the single-channel approximation. We investigate in detail the role of individual contributions to our solutions and discuss some consequences for the spectral functions of the nucleon electromagnetic form factors.Comment: 106 pages, 18 figures; version published in JHE

    Dynamic phenotypic heterogeneity and the evolution of multiple RNA subtypes in Hepatocellular Carcinoma: the PLANET study

    Get PDF
    Intra-tumor heterogeneity (ITH) is a key challenge in cancer treatment, but previous studies have focused mainly on the genomic alterations without exploring phenotypic (transcriptomic and immune) heterogeneity. Using one of the largest prospective surgical cohorts for Hepatocellular Carcinoma (HCC) with multi-region sampling, we sequenced whole genomes and paired transcriptomes from 67 HCC patients (331 samples). We found that while genomic ITH was rather constant across TNM stages, phenotypic ITH had a very different trajectory and quickly diversified in stage II patients. Most strikingly, 30% patients were found to contain more than one transcriptomic subtype within a single tumor. Such phenotypic ITH was found to be much more informative in predicting patient survival than genomic ITH and explains the poor efficacy of single-target systemic therapies in HCC. Taken together, we not only revealed an unprecedentedly dynamic landscape of phenotypic heterogeneity in HCC, but also highlighted the importance of studying phenotypic evolution across cancer types

    Heparin based prophylaxis to prevent venous thromboembolic events and death in patients with cancer - a subgroup analysis of CERTIFY

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with cancer have an increased risk of VTE. We compared VTE rates and bleeding complications in 1) cancer patients receiving LMWH or UFH and 2) patients with or without cancer.</p> <p>Methods</p> <p>Acutely-ill, non-surgical patients ≥70 years with (n = 274) or without cancer (n = 2,965) received certoparin 3,000 UaXa o.d. or UFH 5,000 IU t.i.d. for 8-20 days.</p> <p>Results</p> <p>1) Thromboembolic events in cancer patients (proximal DVT, symptomatic non-fatal PE and VTE-related death) occurred at 4.50% with certoparin and 6.03% with UFH (OR 0.73; 95% CI 0.23-2.39). Major bleeding was comparable and minor bleedings (0.75 vs. 5.67%) were nominally less frequent. 7.5% of certoparin and 12.8% of UFH treated patients experienced serious adverse events. 2) Thromboembolic event rates were comparable in patients with or without cancer (5.29 vs. 4.13%) as were bleeding complications. All cause death was increased in cancer (OR 2.68; 95%CI 1.22-5.86). 10.2% of patients with and 5.81% of those without cancer experienced serious adverse events (OR 1.85; 95% CI 1.21-2.81).</p> <p>Conclusions</p> <p>Certoparin 3,000 UaXa o.d. and 5,000 IU UFH t.i.d. were equally effective and safe with respect to bleeding complications in patients with cancer. There were no statistically significant differences in the risk of thromboembolic events in patients with or without cancer receiving adequate anticoagulation.</p> <p>Trial Registration</p> <p>clinicaltrials.gov, <a href="http://www.clinicaltrials.gov/ct2/show/NCT00451412">NCT00451412</a></p
    corecore