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Abstract

Starting from hyperbolic dispersion relations, we derive a closed system of Roy–Steiner equations
for pion–nucleon scattering that respects analyticity, unitarity, and crossing symmetry. We work
out analytically all kernel functions and unitarity relations required for the lowest partial waves.
In order to suppress the dependence on the high-energy regime we also consider once- and twice-
subtracted versions of the equations, where we identify the subtraction constants with subthreshold
parameters. Assuming Mandelstam analyticity we determine the maximal range of validity of these
equations. As a first step towards the solution of the full system we cast the equations for the
ππ → N̄N partial waves into the form of a Muskhelishvili–Omnès problem with finite matching
point, which we solve numerically in the single-channel approximation. We investigate in detail
the role of individual contributions to our solutions and discuss some consequences for the spectral
functions of the nucleon electromagnetic form factors.
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1 Introduction

Pion–nucleon scattering is one of the most basic and fundamental processes in strong-interaction
physics. Even though a large data basis exists and numerous investigations based on a cornucopia
of methods (dispersion relations, quark models, resonance models, chiral perturbation theory, just to
name a few) have been performed for many decades, the pion–nucleon (πN) scattering amplitude is
still not known to sufficient precision in the low-energy region.1 This becomes most obvious in the
scalar-isoscalar sector, which features the so-called pion–nucleon σ term σπN , i.e. the scalar form factor
of the nucleon at zero momentum transfer. Its value is a measure of the light quark contribution to
the nucleon mass (and it can also be related to its strange quark contribution), see e.g. the classical
paper [5]. The σ term has gained renewed interest as it parameterizes the spin-independent cross
section for possible dark matter candidates scattering off nuclei [6, 7] (for a recent review cf. [8]). In
principle, lattice QCD would be the method of choice to pin down the σ term—however, a direct
computation of the scalar form factor necessarily involves disconnected diagrams, which is not yet
under sufficient control. Similarly, the indirect extraction of σπN from the derivative of the nucleon
mass is still hampered with systematic uncertainties related to the chiral extrapolations utilized, see
e.g. [9]. Therefore, in this paper we follow a different path, namely setting up the powerful machinery of
Roy–Steiner (RS) equations that will ultimately allow for a precise determination of the pion–nucleon
scattering amplitude at low energies.

More specifically, RS equations are based on hyperbolic dispersion relations (HDRs), a particular
kind of dispersion relations along hyperbolae in the Mandelstam plane. Dispersion relations are a
widely used tool that is built upon very general principles, such as Lorentz invariance, unitarity,
crossing symmetry, and analyticity. There are multiple uses of dispersion relations—they can be used
to stabilize extrapolation of experimental data to threshold and allow for a continuation into unphysical
regions, as it is e.g. required for the extrapolation of the pion–nucleon scattering amplitude to the
so-called Cheng–Dashen point [10], which is crucial for the extraction of the σ term. We notice that
unitarity constraints can most conveniently be formulated in terms of partial-wave amplitudes. The
resulting partial-wave dispersion relations (PWDRs) together with unitarity constraints allow to study
processes at low energies with high precision. We just mention a few examples. The most prominent
example is of course pion–pion (ππ) scattering, which is intimately linked to the spontaneous and
explicit chiral symmetry breaking in QCD. The Roy equations [11] are the appropriate PWDRs, which
have been extensively studied in the last years [12–17], leading to a determination of the fundamental
ππ scattering amplitude with unprecedented precision. The pion–pion system, however, is special
as all channels are identical. This is different for the simplest scattering process in QCD involving
strange quarks, namely pion–kaon (πK) scattering, which has been investigated in [18, 19]. As far
as crossing symmetry and isospin quantum numbers are concerned, the pion–kaon system is similar
to the pion–nucleon case considered here. Crossing symmetry relates the s-/u-channel (πN → πN)
and the t-channel (ππ → N̄N) amplitudes, with the s-channel amplitudes relevant e.g. for σ-term
physics, while the t-channel amplitudes feature prominently in the dispersive analysis of the nucleon
form factors. The final aim of solving the full (subtracted) RS system for πN scattering is a precise
determination of the lowest partial-wave amplitudes in the low-energy (physical and unphysical) region
as well as the pertinent low-energy parameters, such as the πN coupling constant and the so-called
subthreshold parameters, and to provide reliable theoretical errors for the fundamental pion–nucleon
scattering amplitude for the first time.

In the low-energy region, the pion–nucleon amplitude is well represented by its S- and P -wave
projections. Due to the spin of the nucleon, one has in total six partial waves in the s- and u-channel,

1The exceptions are the S-wave scattering lengths, which can be extracted with high precision from the beautiful
data on pionic hydrogen and pionic deuterium, see [1–4].
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commonly denoted as f±0+, f
±
1+, f

±
1−, where the superscript I = ± refers to the isospin, l ∈ {0, 1} in the

subscript to the orbital angular momentum, and the ± to the total angular momentum j = l ± 1/2.
Similarly, there are three t-channel S- and P -waves, called f0+, f

1
±, where the superscript refers to

total angular momentum J and the +/− to parallel/antiparallel antinucleon–nucleon helicities, such
that there is one wave with even and two with odd isospin (due to Bose symmetry). It was pointed
out in [20] how to generalize the Roy equations for ππ scattering to the πN system based on fixed-t
dispersion relations. These amount to coupled integral equations for the nine partial waves, where the
effect of the higher partial waves is encoded in the respective kernels of these integral equations. Here,
we follow a somewhat different path by utilizing hyperbolic dispersion relations as pioneered by Hite
and Steiner a long time ago [21]. The main advantage of HDRs is that they combine the s- and the
t-channel (i.e. all three) physical regions, which is obviously not true for e.g. usual fixed-t dispersion
relations. It is known that a reliable continuation to the subthreshold region in dispersion theory
can only be made by using input information also from the t-channel, cf. e.g. [22–25]. Furthermore,
the knowledge of the absorptive parts in the dispersion relations is needed only in regions where the
corresponding partial-wave expansions converge, and HDRs are considered the best choice fulfilling
these requirements that yields still manageable angular kernels [21]. In addition, the underlying
hyperbolic relation (s− a)(u− a) = b (with a, b real-valued parameters) also respects s↔ u crossing
symmetry of the πN amplitude. Due to the tunable parameters a, b, better convergence properties
can be achieved with HDRs and they are found to be especially powerful for determining the σ
term [22]. The derivation of the RS equations for the πN system is given by a series of steps: first,
one expands the s-/t-channel absorptive parts of the HDRs in s-/t-channel partial waves, respectively.
Second, one projects the full, partial-wave-expanded HDRs onto both s- and t-channel partial waves,
resulting in what we will refer to as the s- and t-channel part of the RS system in the following. The
resulting system of equations exhibits the following general structure: it features the nucleon-pole-
term contributions, integrals over the imaginary parts of the s-(and u-)channel as well as integrals over
t-channel absorptive parts, both from the corresponding threshold to infinity. The generic properties
of the equations are then determined by the integral kernels. In the equation for each partial wave, the
corresponding kernels consist of the self-coupling, singular Cauchy kernel and an analytic remainder
that in addition involves the coupling to all other partial waves. In particular, these kernel functions
automatically incorporate the analytic properties expected for a given partial wave: the Cauchy kernel
corresponds to the right-hand cut, while the remainder contains all left-hand-cut contributions.

Another important issue is the possibility to subtract dispersion relations. This can be advanta-
geous for various reasons: first, in some cases the asymptotic behavior of the integrand is such that
subtractions have to be performed to ensure convergence of the dispersive integral. Similarly, if the
high-energy behavior is not known, it can be subsumed in subtraction constants, which are a priori
unknown. In some cases, these subtraction constants can be related to phenomenology or the parame-
ters of a low-energy effective field theory like e.g. chiral perturbation theory (ChPT). Second, one can
even introduce subtractions that are not necessarily required by the asymptotic behavior in order to
lessen the dependence on high-energy input, however, at the expense of introducing the corresponding
subtraction polynomials. Third, subtracting the dispersion relations is especially useful in the πN
case, since subtracting at the so-called subthreshold point allows for a relation to the subthreshold
expansion and is convenient for the continuation to the Cheng–Dashen point. In addition, such sub-
tractions are well suited for the t-channel problem to be discussed later. In what follows, we will
consider unsubtracted as well as subtracted versions of the RS equations.

Next, we will outline the strategy to solve the RS equations, as depicted in Fig. 1: first, one
solves the t-channel part of the RS system, which takes the form of a Muskhelishvili–Omnès (MO)
problem [26,27] (using rather well known s-channel partial waves and ππ phase shifts as input). Then,
one uses the t-channel MO solutions to solve the s-channel part, and finally the procedure is repeated

4



Higher partial waves

Im f I

l±, l ≥ 2, s ≤ sm

Inelasticities

ηI
l±, l ≤ 1, s ≤ sm

s-channel partial waves

solve Roy–Steiner equations for s ≤ sm

f+
0+

f+
1+

f+
1−

f−
0+

f−
1+

f−
1−

High-energy region

Im f I

l±, s ≥ sm

Subtraction

constants

πN coupling

constant

ππ scattering

phases δIt
J

t-channel partial waves

solve Roy–Steiner equations for t ≤ tm

f0
+ f1

± f2
± f3

± f4
± · · ·

High-energy region

Im fJ
±, t ≥ tm

Figure 1: Flowchart of the solution strategy for the Roy–Steiner system for πN scattering.

(iterated) until self-consistency of the partial waves and parameters is reached and the results have
converged, cf. Fig. 1. In both the s- and t-channel part of the system one actually solves the equations
in the low-energy region and for the lowest partial waves, while the amplitudes in the high-energy region
as well as higher partial waves are needed as input. The separation between both energy regions occurs
at the so-called matching points sm and tm in the s- and t-channel, respectively. Due to the complexity
of the full problem, we will not yet solve the whole set of RS equations in this article, but concentrate on
the t-channel part of the system as a first step. The solution of this t-channel subproblem is interesting
by itself, as it features in the dispersive analysis of the nucleon electromagnetic form factors as well as
the scalar form factor, which is, in turn, essential for the extraction of the σ term. At present, in the
unphysical region only the KH80 solution [28,29] has been used. It is, however, well-known that this
solution does not include more recent and precise data and that the πN coupling constant used there
differs significantly from more modern determinations. Furthermore, no analysis of the theoretical
uncertainties is performed (apart from an iteration uncertainty, cf. Sect. 5.3.2), which is an absolute
requirement for any modern theoretical investigation. Therefore, a new t-channel solution is needed
as a first step for solving the full system. Finally, a consistent set of partial-wave amplitudes for all
channels is especially important as far as the σ-term extraction is concerned, and it has been pointed
out that the KH80 solution seems to suffer from internal inconsistencies [22,25,30], which emphasizes
the necessity of a full system of PWDRs.

The original Roy equations for ππ scattering [11] were solely based on fixed-t dispersion relations.
This approach fails for processes involving non-identical particles, since crossing symmetry intertwines
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different physical processes. For this reason, a combination of fixed-t and hyperbolic dispersion re-
lations was used in [18, 19] to construct integral equations for πK scattering for the partial waves of
both s- and t-channel, which are therefore referred to as Roy–Steiner equations. In this work, we
solely consider HDRs, a path that has already proven useful in the construction of RS equations for
γγ → ππ [31]. Our solution strategy for the t-channel MO equations follows [19], however, there is a
major difference between ππ → K̄K and ππ → N̄N as far as inelasticities in the unitarity relation
are concerned, since the pseudophysical region in the πN case is much larger due to the large nucleon
mass. In both cases, the first non-negligible contribution besides ππ intermediate states originate
from K̄K, which play an important role for the S-wave in view of the occurrence of the f0(980) res-
onance. For ππ → K̄K the inelasticities can simply be accounted for by using phase-shift solutions
for the corresponding partial waves, while physical input for ππ → N̄N is only available above the
two-nucleon threshold. Once the t-channel problem is solved, the remaining equations take the form
of the conventional ππ Roy equations, such that known results concerning existence and uniqueness
of solutions [32,33] may be transferred to the s-channel RS equations as well.

This work is organized as follows: in Sect. 2 we specify our conventions and review HDRs for the
invariant amplitudes of πN scattering. In Sects. 3 and 4 we derive a closed system of RS equations as
well as a once- and twice-subtracted version, and show how the t-channel equations can be cast into
the form of a MO problem. Sect. 5 is devoted to the explicit solution of the t-channel MO problem:
we first review the MO problem with a finite matching point and state the explicit solution for the
πN t-channel amplitudes. Then we collect the necessary input and discuss the numerical results.
Finally, we briefly discuss the application to nucleon form factors before concluding in Sect. 6. The
explicit derivation of the s- and t-channel RS equations is described in full detail in Appendices A
and B, respectively. In Appendix C we determine the range of convergence of our equations, while
Appendix D contains a discussion of the asymptotic regions in the dispersion integrals.

2 Preliminaries

2.1 Kinematics

We take the s-channel reaction of πN scattering to be π(q)+N(p) → π(q′)+N(p′) and the t-channel
reaction to be π(q) + π(−q′) → N̄(−p) +N(p′) with the usual Mandelstam variables

s = (p+ q)2 , t = (p − p′)2 , u = (p− q′)2 , (2.1)

which fulfill
s+ t+ u = 2m2 + 2M2

π = Σ , (2.2)

where m and Mπ denote the nucleon and pion mass, respectively. We will use the masses of [34], with
the isospin limit defined by the charged particles, i.e. Mπ ≡Mπ± and m ≡ mp (later also MK ≡MK±

for the kaon mass). Unless stated otherwise, u is always to be understood as a function of s and t

u(s, t) = Σ− s− t . (2.3)

We define the generic kinematical Källén function

λPQ
x = λ

(
x,M2

P ,M
2
Q

)
=
[
x− (MP −MQ)

2
][
x− (MP +MQ)

2
]
, (2.4)

and for the equal-mass case

σPx = σ
(
x,M2

P

)
=

√
λPP
x

x
=

√
1− 4M2

P

x
. (2.5)
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Furthermore, we introduce the general definitions2

Σ = 2s0 , ν(s, t) =
s− u

4m
=

2s+ t− Σ

4m
=

2(s− s0) + t

4m
,

W 2 = s , νB(t) = −s+ u− 2m2

4m
=
t− 2M2

π

4m
= ν(s = m2, t) , (2.6)

with W as the total center-of-mass-system (CMS) energy, as well as the abbreviation

λx = λπNx = λ
(
x,m2,M2

π

)
=
[
x− s−

][
x− s+

]
, s± =W 2

± = (m±Mπ)
2 , (2.7)

where W− and W+ denote the (s-channel) pseudothreshold and threshold energies, respectively. Ad-
ditional related useful definitions and relations are

Σ± = m2 ±M2
π , Σ+ = s0 , Σ− =W+W− , Σ2

− = s+s− , Σ = s+ + s− . (2.8)

The CMS kinematics of the elastic s-channel reaction πN → πN above threshold (i.e. for s ≥ s+)
with CMS momentum q = |q|, nucleon energy E, and scattering angle zs = cos θs are then given by

q(s) =

√
λs
4s

, E(±W ) = ±
√
m2 + q2 =

s+Σ−
2(±W )

= ±E(W ) ,

zs(s, t) = 1− s+ u− Σ

2q2
= 1 +

t

2q2
, 4q2 = s− Σ+

Σ2
−
s
. (2.9)

For the t-channel reaction ππ → N̄N with CMS momenta qt for the pions and pt for the nucleons
and scattering angle zt = cos θt, the CMS kinematics above threshold (i.e. for t ≥ 4m2) read

qt(t) =

√
t

4
−M2

π =

√
t

2
σπt = +iq− , pt(t) =

√
t

4
−m2 =

√
t

2
σNt = +ip−

zt(s, t) =
s− u

4ptqt
=

2s + t− Σ

4ptqt
=
mν

ptqt
, (2.10)

where below the corresponding two-particle thresholds tπ and tN one has to use the quantities

q−(t) =

√
M2

π − t

4
≥ 0 ∀ t ≤ tπ = 4M2

π , p−(t) =

√
m2 − t

4
≥ 0 ∀ t ≤ tN = 4m2 , (2.11)

whose phases are constrained in general to ptqt = −p−q− and fixed here by convention. Relations
valid in all kinematical ranges can be written down by relying on the quantities

q2t (t) =
t− tπ
4

= −q2−(t) , p2t (t) =
t− tN

4
= −p2−(t) , (2.12)

from which roots in the corresponding regimes may be taken.3

2For more on πN kinematics and for πN conventions in general we refer to [29]. Note that the convention for ν
therein and which we have adopted here differs from the choice ν = s− u of e.g. [21].

3We use the non-cyclic convention a
b×c

d for a reaction a+b → c+d in order to stick to the usual πN conventions of [29],
rather than the cyclic convention a

b×d
c that leads to symmetric kinematical relations for the s-, t-, and u-channel and is

therefore sometimes used in the literature. While the cyclic convention is especially favorable when all four particles are
identical like e.g. in the case of ππ scattering, it leads to different sign conventions for the CMS scattering angles and also
to different isospin crossing matrices (cf. Sect. 2.2). The non-cyclic convention, however, is well-suited for s ↔ u crossing
symmetric situations like e.g. πN scattering, with t = 0 corresponding to an undeflected pion (i.e. forward scattering)
in both the s- and u-channel and thus zs(t = 0) = 1 = zu(t = 0) rather than zs(t = 0) = 1 = −zu(t = 0) for the cyclic
convention.
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Figure 2: Physical regions for s-, t-, and u-channel reactions of πN scattering (shaded) and the
subthreshold triangle (dot-dashed) enclosing the subthreshold lens.

The physical regions for the s-, t-, and u-channel reactions are restricted to kinematical regions
where the Kibble function Φ [35] is non-negative. For πN scattering we have

Φ

t
= su− Σ2

− = 4sq2(1 + zs) = 4p2t q
2
t (1− z2t ) , (2.13)

such that the boundaries are given by

Φ = −s
[
u− (Σ− s)

][
u− Σ2

−
s

]

=
t

4

[
t−

(
Σ− 2

√
(2mν)2 − Σ2

−
)][

t−
(
Σ+ 2

√
(2mν)2 − Σ2

−
)]

= 0 , (2.14)

and the corresponding physical regions are shown in Fig. 2.
πN scattering in the isospin limit can be described by the four Lorentz-invariant amplitudes

A±(s, t) and B±(s, t), as well as the related amplitudes D±(s, t) convenient for low-energy theo-
rems (all to be defined in Sect. 2.2). These amplitudes are real inside the Mandelstam subthreshold
triangle defined by the lines s = s+, u = s+, and t = tπ, i.e. below the thresholds for the physical s-
and u-channel reactions and below the ππ threshold,4 including in particular the small on-shell but
unphysical lens-shaped low-energy region (subthreshold lens) close to (ν = 0, t = 0) depicted in Fig. 2.

The analytic structure of the invariant amplitudes governs the analytic structure of both the s-
and t-channel partial-wave amplitudes, for details we refer to [29] and references therein. Here, we
only mention the different analytic structures of the s-channel πN scattering invariant amplitudes (in
the complex s-plane)

4Note that t ≤ 0 is necessary for both the s- and u-channel reaction to be physical.
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• right-hand cut (RHC): physical s-channel cut along s ≥ s+,

• nucleon pole: at s = m2 from the s-channel nucleon-exchange pole term 1/(s −m2),

• crossed cut: along s ≤ s− as combination of the u-channel cut s ≤ s− and the t-channel cut
s ≤ −Σ−,

• left-hand cut (LHC): collective name for all cuts in the unphysical region, i.e. for Re {s} < s+.

In addition, the mapping between the complex s- and q2-planes involves a circular cut in the complex
s-plane at |s| = Σ− = s(+)s(−), where s(+)(q

2) and s(−)(q
2) are the two solutions

s(±)(q
2) = 2q2 +Σ+ ± 2

√
(q2 +m2)(q2 +M2

π) (2.15)

for a given q2 (note the cut for −m2 ≤ q2 ≤ −M2
π) with s(+)(0) = s+ and s(−)(0) = s−. This circular

cut becomes relevant once amplitudes are considered as functions of q2 rather than s, e.g. for the
partial waves. The additional analytic structures of the s-channel partial-wave amplitudes due to the
partial-wave projection are

• kinematical cuts: for s ≤ 0 from terms depending on W =
√
s in the partial-wave projection

formula,

• short nucleon cut:5 along Σ2
−/m

2 ≤ s ≤ m2 + 2M2
π from evaluating the u-channel nucleon-

exchange pole term 1/(u(s, zs)−m2) for zs = ±1,

• circular-cut contributions: from t-channel exchange of particles with mass mt ≥ 2Mπ, i.e. eval-
uating 1/(t(s, zs)−m2

t ) for zs = ±1 and m2
t = tπ,

• crossed-cut contributions for s ≤ 0 and singularities at s = 0: from partial-wave projection of
the aforementioned u- and t-channel exchanges.

Finally, we mention some kinematical points of specific interest (cf. e.g. [29, 37]): the Cheng–Dashen
point at (s = u = m2, t = 2M2

π) = (ν = 0, νB = 0) is pivotal for πN σ-term physics, since the
Born-term-subtracted amplitude D̄+(ν = 0, t = 2M2

π) = A+(ν = 0, t = 2M2
π)− g2/m is related to the

σ term by a low-energy theorem [10,20,38–40].6 The subthreshold point at (s = u = s0, t = 0) = (ν =
0, νB = −M2

π/(2m)) serves as expansion point for the subthreshold expansion, while the (s-channel)
threshold point (s = s+, t = 0, u = s−) = (ν = Mπ, νB = −M2

π/(2m)) is relevant for the threshold
expansion/parameters (e.g. scattering lengths).

2.2 Isospin structure

The most general Lorentz-invariant and parity-conserving T -matrix element for the process πa(q) +
N(p) → πb(q′) +N(p′) with isospin indices a and b is given in terms of Lorentz-invariant amplitudes
A, B, and D according to

T ba
fi (s, t) =

1

2
{τ b, τa}T+

fi(s, t) +
1

2
[τ b, τa]T−

fi(s, t) = δbaT+
fi(s, t) + iǫbacτ

cT−
fi(s, t) ,

T I
fi(s, t) = ūf (p

′)

{
AI(s, t) +

/q′ + /q

2
BI(s, t)

}
ui(p) = ūf (p

′)

{
DI(s, t)−

[/q′, /q]

4m
BI(s, t)

}
ui(p) ,

DI(s, t) = AI(s, t) + ν(s, t)BI(s, t) , I ∈ {+,−} , (2.16)

5Actually, there are two short nucleon cuts as discussed in the appendix of [36]. The second one, however, is situated
on an unphysical sheet.

6Note that since zCD
s = zs(m

2, 2M2
π) = −M2

π/(4m
2 −M2

π) ≈ −5.56× 10−3 is close to zero, the amplitudes at the CD
point are dominated by the (s-channel) S-wave.
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where we have introduced the isospin index I = +/− for the part that is even/odd under interchange
of a and b. Furthermore, the πN scattering amplitudes A have definite crossing properties under
interchange of s and u for fixed t, i.e. under change of sign of ν, such that one can work with
amplitudes

Ã(ν2, t) =

{
A(ν, t) if A(ν, t) = +A(−ν, t) ,
A(ν,t)

ν if A(ν, t) = −A(−ν, t) ,
(2.17)

which are even functions of ν and thus free of kinematical square root branch cuts in the complex
t-plane originating from pt or qt. Explicitly, the above amplitudes fulfill

A±(ν, t) = ±A±(−ν, t) , B±(ν, t) = ∓B±(−ν, t) . (2.18)

The amplitudes of all ten πN scattering reactions can be written in terms of only two independent
matrix elements with total s-channel isospin index Is ∈ {1/2, 3/2}. In agreement with [29] (i.e. using
the usual Condon–Shortley phase convention for the Clebsch–Gordan coefficients [34], but the non-
cyclic kinematical convention according to Sect. 2.1) we assign the isospin-doublets of both the nucleons
and antinucleons according to the fundamental representation of the Lie-algebra of SU(2)

|p〉 =
∣∣∣∣
1

2
,
1

2

〉
, |n〉 =

∣∣∣∣
1

2
,−1

2

〉
, |n̄〉 =

∣∣∣∣
1

2
,
1

2

〉
, |p̄〉 =

∣∣∣∣
1

2
,−1

2

〉
, (2.19)

and the isospin-triplet of the pions according to

|π+〉 = |1, 1〉 , |π0〉 = |1, 0〉 , |π−〉 = |1,−1〉 , (2.20)

which leads to the following properties under charge conjugation C

C|p〉 = |p̄〉 , C|n〉 = −|n̄〉 , C|π±〉 = −|π∓〉 , C|π0〉 = |π0〉 . (2.21)

Thus, the relations between the spherical and the Cartesian components of the pion-multiplet are

|π±〉 = ∓ 1√
2
(|π1〉 ± i|π2〉) , |π0〉 = |π3〉 . (2.22)

By decomposing the initial and final isospin states of the πN system into linear combinations of
s-channel isospin eigenstates, e.g.

|π+p〉 =
∣∣∣∣
3

2
,
3

2

〉
, |π−p〉 =

√
1

3

∣∣∣∣
3

2
,−1

2

〉
−
√

2

3

∣∣∣∣
1

2
,−1

2

〉
, |π0n〉 =

√
2

3

∣∣∣∣
3

2
,−1

2

〉
+

√
1

3

∣∣∣∣
1

2
,−1

2

〉
,

(2.23)
we can readily obtain the relations between the πN isospin amplitudes

A+ = A(π+p→ π+p) = A(π−n→ π−n) = A+ −A− = A3/2 ,

A− = A(π−p→ π−p) = A(π+n→ π+n) = A+ +A− =
1

3
(2A1/2 +A3/2) ,

A0 = A(π−p→ π0n) = A(π+n→ π0p) = −
√
2A− = −

√
2

3
(A1/2 −A3/2) ,

A(π0p→ π0p) = A(π0n→ π0n) = A+ =
1

3
(A1/2 + 2A3/2) ,

A+ + 2A− = A1/2 . (2.24)
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From these we can infer the so-called isospin triangle relation

A+ −A− =
√
2A0 , (2.25)

and the relations for the isospin even/odd amplitudes with I = +/− and the amplitudes in the
s-channel isospin basis Is ∈ {1/2, 3/2} can be summarized in matrix notation as

(
A+

A−

)
= Cνs

(
A1/2

A3/2

)
,

(
A1/2

A3/2

)
= Csν

(
A+

A−

)
, Cνs =

1

3
Csν =

1

3

(
1 2
1 −1

)
. (2.26)

The s-channel isospin amplitudes with Is ∈ {1/2, 3/2} and the corresponding u-channel isospin am-
plitudes with Iu ∈ {1/2 = N, 3/2 = ∆} can be shown to obey the s↔ u crossing isospin relations

(
A1/2

A3/2

)
= Csu

(
AN

A∆

)
,

(
AN

A∆

)
= Cus

(
A1/2

A3/2

)
, Csu = Cus =

1

3

(
−1 4
2 1

)
, (2.27)

and combining this with (2.26) yields

(
A+

A−

)
= Cνu

(
AN

A∆

)
, Cνu = CνsCsu =

1

3

(
1 2
−1 1

)
, Cuν = C−1

νu =

(
1 −2
1 1

)
. (2.28)

For the t-channel reactions, the |N̄N〉 isospin states are superpositions of the states |It = 1, (It)3〉
and |It = 0, 0〉

|n̄p〉 = |1, 1〉 , |n̄n〉 = 1√
2

(
|1, 0〉 + |0, 0〉

)
, |p̄p〉 = 1√

2

(
|1, 0〉 − |0, 0〉

)
, |p̄n〉 = |1,−1〉 ,

(2.29)
from which we can deduce7

|1, 0〉 = 1√
2
(|n̄n〉+ |p̄p〉) , |0, 0〉 = 1√

2
(|n̄n〉 − |p̄p〉) , (2.30)

whereas the decomposition of the |ππ〉 isospin states reads

|π+π0〉 = 1√
2
(|2, 1〉 + |1, 1〉) , |π+π−〉 = 1√

6
|2, 0〉 + 1√

2
|1, 0〉 + 1√

3
|0, 0〉 ,

|π−π0〉 = 1√
2
(|2,−1〉 − |1,−1〉) , |π0π0〉 =

√
2

3
|2, 0〉 − 1√

3
|0, 0〉 . (2.31)

By strictly using the non-cyclic kinematical convention together with the properties under charge
conjugation (2.21) we can obtain the t-channel amplitudes from the s-channel ones via crossing

A± = −A(p̄p→ π±π∓) , A0 = A(π+n→ π0p) = −A(n̄p→ π+π0) = A(n̄p→ π0π+) , (2.32)

which together with the s-channel isospin relations (2.24) on the one hand and the t-channel isospin
decompositions above on the other hand yields the following relations for the reactions with a proton

7Note that (2.29) and (2.30) are in perfect agreement with the usual Clebsch–Gordan coefficients [34], but differ
from [29] wherein different conventions are used in these and corresponding equations. In particular, the analog of (2.33)
in [29] seems to (exceptionally) follow the cyclic kinematical convention. Nevertheless, all other relations, especially the
crossing matrix (2.34) and the important relations (2.35), are identical.
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as target particle

A(p̄p→ π+π−) = −A+ = −A+ +A− = −A3/2 = − 1√
6
A0 +

1

2
A1 ,

A(p̄p→ π−π+) = −A− = −A+ −A− = −1

3
(2A1/2 +A3/2) = − 1√

6
A0 − 1

2
A1 ,

A(n̄p→ π+π0) = −A0 =
√
2A− =

√
2

3
(A1/2 −A3/2) =

1√
2
A1 ,

A(p̄p→ π0π0) =
1

2
(A+ +A−) = A+ =

1

3
(A1/2 + 2A3/2) =

1√
6
A0 . (2.33)

Thereby we can easily deduce the s↔ t crossing isospin relations

(
A1/2

A3/2

)
= Cst

(
A0

A1

)
, Cst =

(
1√
6

1
1√
6

−1
2

)
,

(
A0

A1

)
= Cts

(
A1/2

A3/2

)
, Cts =

2

3

(√
3
2

√
6

1 −1

)
,

(2.34)
and the fact that A+ and A− have well-defined quantum number It = 0 and It = 1, respectively,

(
A+

A−

)
= Cνt

(
A0

A1

)
, Cνt = CνsCst =

(
1√
6

0

0 1
2

)
. (2.35)

Since
G|π〉 = −|π〉 ⇒ G|ππ〉 = |ππ〉 , (2.36)

the antinucleon–nucleon initial state in the reaction N̄N → ππ has to be an eigenstate of G-parity
with eigenvalue +1, i.e. it can only couple to states with an even number of pions. The result for
charge conjugation of an antifermion–fermion or antiboson–boson pair

C|f̄f〉 = (−1)L+S |f̄ f〉 , C|b̄b〉 = (−1)L|b̄b〉 , (2.37)

yields
G|N̄N〉 = (−1)J+It |N̄N〉 , (2.38)

from which we can conclude that for reactions with a two-pion final state (i.e. G = +1) only the
combinations (J even, It = 0) and (J odd, It = 1) are allowed. The same combinations arise from
the symmetry properties of the symmetric isosinglet for It = 0 and the antisymmetric isotriplet for
It = 1 due to the fact that the exchange of two pions in an orbital state with total angular momentum
J = L yields a factor of (−1)J . According to (2.35) this leads to the following selection rules for the
partial-wave decomposition of the t-channel amplitudes: the partial-wave expansion of the amplitudes
AI=+/− or AIt=0/1 contains only partial waves with even/odd J , respectively, and the transition
between the two sets of amplitudes involves the isospin crossing coefficients cJ with

cJ =

{
1√
6

if J is even ,
1
2 if J is odd .

(2.39)

2.3 Hyperbolic dispersion relations

In [21] it was shown how to construct HDRs for the πN scattering amplitudes, using hyperbolae in
the Mandelstam plane of the form

(s− a)(u− a) = b , (2.40)
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with hyperbola parameter b and asymptotes s = a and u = a. They obey the relation

t = − b

s− a
+Σ− s− a , (2.41)

and

s(t; a, b) =
1

2

(
Σ− t+ 4mν(t; a, b)

)
, 4mν(t; a, b) =

√
(t− Σ+ 2a)2 − 4b ,

u(t; a, b) =
1

2

(
Σ− t− 4mν(t; a, b)

)
, t(±)(ν; a, b) = Σ− 2a± 2

√
(2mν)2 + b . (2.42)

In the following b is considered as a function of s and t for a given value of a,

b(s, t; a) = (s − a)(Σ − s− t− a) , (2.43)

and hence for given s and a one considers a family of hyperbolae wherein all members are uniquely
defined by t. Under the assumption that no subtractions are necessary (cf. Appendix D), the HDRs
for the πN scattering Lorentz-invariant amplitudes can be written as

A+(s, t; a) =
1

π

∞∫

s+

ds′
[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImA+(s′, t′) +

1

π

∞∫

tπ

dt′
ImA+(s′, t′)

t′ − t
, (2.44)

A−(s, t; a) =
1

π

∞∫

s+

ds′
[

1

s′ − s
− 1

s′ − u

]
ImA−(s′, t′) +

1

π

∞∫

tπ

dt′
ν

ν ′
ImA−(s′, t′)

t′ − t
,

B+(s, t; a) = N+(s, t) +
1

π

∞∫

s+

ds′
[

1

s′ − s
− 1

s′ − u

]
ImB+(s′, t′) +

1

π

∞∫

tπ

dt′
ν

ν ′
ImB+(s′, t′)

t′ − t
,

B−(s, t; a) = N−(s, t; a) +
1

π

∞∫

s+

ds′
[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImB−(s′, t′) +

1

π

∞∫

tπ

dt′
ImB−(s′, t′)

t′ − t
,

where we have defined the abbreviation

ν ′(s′, t′) = ν(s′, t′) =
2s′ + t′ − Σ

4m
, (2.45)

and under the integrals one has to use

t′(s′, s, t; a) = −b(s, t; a)
s′ − a

+Σ− s′ − a , s′(t′, s, t; a) =
1

2

[
Σ− t′ +

√
(t′ −Σ+ 2a)2 − 4b(s, t; a)

]
,

(2.46)
since the external kinematics (s, t, u) and the internal kinematics (s′, t′, u′) are related by

(s− a)(u− a) = b = (s′ − a)(u′ − a) , s+ t+ u = Σ = s′ + t′ + u′ . (2.47)

Only the amplitudes B± contain the Born-term contributions N± due to the nucleon poles given by
(cf. [29] for N̄±)

N+(s, t) = N̄+(s, t) , N̄+(s, t) = g2
[

1

m2 − s
− 1

m2 − u

]
=
g2

m

ν

ν2B − ν2
,

N−(s, t; a) = N̄−(s, t)− g2

m2 − a
, N̄−(s, t) = g2

[
1

m2 − s
+

1

m2 − u

]
=
g2

m

νB
ν2B − ν2

, (2.48)
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where the usual pseudoscalar πN coupling constant g and the pseudovector πN coupling constant f
are given by8

g2

4π
=

4m2f2

M2
π

≈ 13.7 . (2.49)

In order to express the integrands in terms of the corresponding CMS scattering angles according to

X(s′, z′s) = X(s′, t′)
∣∣∣
t′=t′(s′,z′s)

, X(t′, z′t) = X(s′, t′)
∣∣∣
s′=s′(t′,z′t)

, X ∈
{
A±, B±} , (2.50)

we define

z′s(s
′, t′) = zs(s

′, t′) = 1 +
t′

2q′2
, q′(s′) = q(s′) ,

z′t(s
′, t′) = zt(s

′, t′) =
mν ′

p′tq
′
t

, p′t(t
′) = pt(t

′) = ip′−(t
′) , q′t(t

′) = qt(t
′) = iq′−(t

′) , (2.51)

which leads to the relations

t′(s′, z′s) = −2q′2(1− z′s) , z′s(s
′, s, t; a) = 1− 1

2q′2

[
s′ − Σ+ a+

b(s, t; a)

s′ − a

]
,

s′(t′, z′t) =
1

2
(Σ − t′ + 4p′tq

′
tz

′
t) , z′t(t

′, s, t; a) =
1

4p′tq
′
t

√
(t′ − Σ+ 2a)2 − 4b(s, t; a) . (2.52)

Note that b is linearly related to z′s for the s-channel, but only to z′2t for the t-channel, which will have
important consequences in Appendix C, where it will be shown that the HDRs (2.44) incorporate
contributions from the direct as well as from the crossed channels, but not from double-spectral
regions, provided the parameters are chosen appropriately. Furthermore, one can check explicitly that
A+ and B− are indeed functions of ν2, while A− and B+ are proportional to ν. Since moreover
4mν ′ = 4p′tq

′
tz

′
t = s′−u′ is always real, one may also write the above HDRs (2.44) in terms of reduced

amplitudes A−/ν and B+/ν, respectively. This fact will be used in Sect. 4 and Appendix D.3.
In contrast, for usual fixed-t dispersion relations external and internal kinematics are related by

t = t′ , s+ t+ u = Σ = s′ + t′ + u′ . (2.53)

It is remarkable that the HDRs have the simple form of (2.44) and (2.48), which by neglecting the
terms depending on a (or equivalently for |a| → ∞) reduce to fixed-t dispersion relations, provided,
however, that the t-channel integrals are discarded. Moreover, the hyperbolae then reduce to fixed-t
lines, and thus we will refer to the limit |a| → ∞ as “fixed-t limit” in the following.9

3 Roy–Steiner system for pion–nucleon scattering

In this section, we first collect the results for the partial-wave hyperbolic dispersion relations (PWH-
DRs) that follow from the HDRs (2.44) via partial-wave expansion in and projection onto both s-
and t-channel partial waves as explained in detail in Appendices A and B, in order to state the closed
system of RS equations for πN scattering. Then, we elaborate on the corresponding partial-wave
unitarity relations for the s- and especially the t-channel. Finally, we use the threshold behavior of
the t-channel partial waves fJ±(t) in order to cast the t-channel part of the RS system in the form of
a MO problem, whose solution will be the subject of Sect. 5.

8Note that [29] quotes a value of 14.28 based on [41]. For more information on conventions as well as the current
value see [3,4,42,43].

9As explained in Appendix C.2, only the limit a → −∞ is compatible with range-of-convergence considerations.
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3.1 Partial-wave hyperbolic dispersion relations

The s-channel partial-wave amplitudes are conventionally denoted by f Il±(W ) with isospin (i.e. cross-
ing) index I ∈ {+,−} and total angular momentum j = l ± 1/2 = l±, where the orbital angular
momentum can take the values l ≥ 0 for j = l+ and l ≥ 1 for j = l−. Using a shorthand notation for
the zs-projections of the invariant amplitudes

XI
l (s) =

1∫

−1

dzs Pl(zs)X
I(s, t)

∣∣∣
t=t(s,zs)=−2q2(1−zs)

for X ∈ {A,B} , (3.1)

the well-known s-channel partial-wave projection formula reads [44]

f Il±(W ) =
1

16πW

{
(E +m)

[
AI

l (s) + (W −m)BI
l (s)

]
+ (E −m)

[
−AI

l±1(s) + (W +m)BI
l±1(s)

]}
.

(3.2)

By construction, the f Il±(W ) obey the MacDowell symmetry relation [45] in the complex W -plane

f Il+(W ) = −f I(l+1)−(−W ) ∀ l ≥ 0 , (3.3)

due to which only half of the complex W -plane is actually needed. Alternatively, this relation can
be used the other way around to derive the partial waves with j = l− from the ones with j =
l+. Expanding the absorptive parts of the HDRs (2.44) into s-channel and t-channel partial waves,
respectively, and subsequently projecting the full HDRs onto the s-channel partial waves f Il±(W ) yields
the s-channel PWHDRs of [21]

f Il+(W ) = N I
l+(W ) +

1

π

∞∫

W+

dW ′
∞∑

l′=0

{
KI

ll′(W,W
′) Im f Il′+(W

′) +KI
ll′(W,−W ′) Im f I(l′+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∑

J

{
GlJ(W, t

′) Im fJ+(t
′) +HlJ(W, t

′) Im fJ−(t
′)
}

= −f I(l+1)−(−W ) ∀ l ≥ 0 , (3.4)

which constitutes the s-channel part of the full RS system. Here, N I
l±(W ) represent the contributions

due to the nucleon pole terms in the amplitudes B± as given in (2.44). Each s-channel partial
wave f Il±(W ) is coupled to the absorptive parts of all other s-channel partial waves via the kernels

KI
ll′(W,W

′), which contain the usual Cauchy kernel responsible for the physical cut and an analytically
known remainder (denoted by dots below) containing only left-hand cut contributions

KI
ll′(W,W

′) =
δll′

W ′ −W
+ . . . ∀ l, l′ ≥ 0 , (3.5)

as well as to the absorptive parts of the t-channel partial waves fJ±(t) via the kernels GlJ (W, t
′) and

HlJ(W, t
′), where the lower index ± denotes parallel(+) or antiparallel(−) antinucleon–nucleon helic-

ities and the total (t-channel) angular momentum J can take the values J ≥ 0 or J ≥ 1, respectively.
Due to Bose statistics (i.e. crossing symmetry), the summations over J in (3.4) run over even/odd
values of J for the crossing even/odd partial waves (upper index I = +/−), respectively, as explained
in Sect. 2.2. For the sake of completeness and convenience, in Appendix A the different contribu-
tions to (3.4) will be discussed along the lines of [21, 46–48] (correcting several typographical errors,
adjusting the conventions, and partially extending the presentation therein at the same time).
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For the t-channel partial-wave projection, by virtue of s ↔ u crossing symmetry it is possible to
use only half the interval in the cosine of the t-channel CMS scattering angle and thus the projection
can be written as [49]

fJ+(t) = − 1

4π

1∫

0

dzt PJ(zt)

{
p2t

(ptqt)J
AI(s, t)

∣∣∣
s=s(t,zt)

− m

(ptqt)J−1
ztB

I(s, t)
∣∣∣
s=s(t,zt)

}
∀ J ≥ 0 ,

fJ−(t) =
1

4π

√
J(J + 1)

2J + 1

1

(ptqt)J−1

1∫

0

dzt

[
PJ−1(zt)− PJ+1(zt)

]
BI(s, t)

∣∣∣
s=s(t,zt)

∀ J ≥ 1 , (3.6)

where again I = +/− if J is even/odd, such that the integrands are always functions of the squared
angle z2t . These formulae are valid literally only for t ≥ tN , but can actually be used for all kinematical
cases, cf. the discussion following (A.73). For a closed system of RS equations we need to derive the
analog of (3.4) for the t-channel partial waves fJ±(t), cf. [11, 19,31]. The result takes the form

fJ+(t) = ÑJ
+(t) +

1

π

∞∫

W+

dW ′
∞∑

l=0

{
G̃Jl(t,W

′) Im f Il+(W
′) + G̃Jl(t,−W ′) Im f I(l+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∑

J ′

{
K̃1

JJ ′(t, t′) Im fJ
′

+ (t′) + K̃2
JJ ′(t, t′) Im fJ

′

− (t′)
}

∀ J ≥ 0 ,

fJ−(t) = ÑJ
−(t) +

1

π

∞∫

W+

dW ′
∞∑

l=0

{
H̃Jl(t,W

′) Im f Il+(W
′) + H̃Jl(t,−W ′) Im f I(l+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∑

J ′

K̃3
JJ ′(t, t′) Im fJ

′

− (t′) ∀ J ≥ 1 , (3.7)

where again I = +/− if J is even/odd and the sum over J ′ runs over even/odd values of J ′ if J is
even/odd (cf. Sect. 2.2). As for the s-channel case, the kernels for the corresponding t-channel partial
waves can be split into the Cauchy kernel and well-defined remainders

K̃1
JJ ′(t, t′) =

δJJ ′

t′ − t
+ . . . ∀ J, J ′ ≥ 0 , K̃3

JJ ′(t, t′) =
δJJ ′

t′ − t
+ . . . ∀ J, J ′ ≥ 1 , (3.8)

but, in contrast to the s-channel case, only higher t-channel partial waves can couple to lower ones,
since K̃1,2,3

JJ ′ (t, t′) = 0 for all J ′ < J , which will be a key ingredient in reducing the t-channel part (3.7)
of the RS system to a MO problem in Sect. 3.3. The technical details of the derivation of the different
contributions to (3.7) are relegated to Appendix B.

There are three aspects of convergence in the RS system of PWHDRs constructed in Appendices A
and B: first, the question of convergence of the integrals in the high-energy regime is linked to the num-
ber of necessary subtractions of the dispersion relations, which will be discussed in Sect. 4. Moreover,
for the full system of RS equations to be valid, the convergence of both the partial-wave expansion of
the imaginary parts inside the integrals and the s- and t-channel partial-wave projection of the full
HDR equations needs to be shown. Analyzing these two constraints yields the ranges of convergence
in s and t for (3.4) and (3.7), respectively. As explained in detail in Appendix C, the hyperbola
parameter a can actually be tuned in order to obtain the largest possible domain of validity. For the
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s-channel part (3.4) of the RS system the combined analysis of s- and t-channel constraints leads to
an optimal value of a and a corresponding range of convergence in s of (cf. Appendix C.3)

a = −23.19M2
π ⇒ s ∈

[
s+ = (m+Mπ)

2, 97.30M2
π

]
⇔ W ∈ [W+ = 1.08GeV, 1.38GeV] ,

(3.9)
where s+ = 59.64M2

π , while for the t-channel part (3.7) we find (cf. Appendix C.4)

a = −2.71M2
π ⇒ t ∈ [tπ = 4M2

π , 205.45M
2
π ] ⇔

√
t ∈ [

√
tπ = 0.28GeV, 2.00GeV] . (3.10)

Note that different choices of a for the s- and t-channel partial-wave projections are perfectly justified,
as we may start from different sets of HDRs. However, the choice of a is not only crucial for the ranges
of convergence, but also influences the high-energy behavior of the imaginary parts, whose estimation
via Regge asymptotics is discussed in Appendix D. For this purpose one splits the corresponding
integration ranges s+ ≤ s′ ≤ ∞ and tπ ≤ t′ ≤ ∞ of the HDRs (2.44) at some appropriate values
sa = W 2

a and ta, respectively, in order to describe the asymptotic s- and t-channel contributions
to the invariant amplitudes in terms of Regge amplitudes. The remaining non-asymptotic parts are
then given by the corresponding integrals over s+ ≤ s′ ≤ sa and tπ ≤ t′ ≤ ta, respectively, plus the
nucleon pole terms N I(s, t) for the amplitudes BI(s, t). However, eventually the high-energy region
is of only little practical relevance, in particular if subtractions are performed in order to suppress the
dependence on higher energies (cf. Sect. 4).

In order to use partial-wave unitarity relations that are diagonal in the s-channel partial waves, we
have to work in the s-channel isospin basis Is ∈ {1/2, 3/2} rather than in the isospin even/odd basis
I = +/− (as will be explained in Sect. 3.2), and therefore in analogy to (2.26) we define

(
X1/2

X3/2

)
= Csν

(
X+

X−

)
,

(
X+

X−

)
= Cνs

(
X1/2

X3/2

)
, for X ∈ {fl±, Nl±,Kll′} , (3.11)

and the abbreviation

K
1/2+3/2
ll′ (W,W ′) = K

1/2
ll′ (W,W ′) +K

3/2
ll′ (W,W ′) = 2K+

ll′(W,W
′) +K−

ll′(W,W
′) . (3.12)

The full closed RS system of PWDRs for both s- and t-channel partial waves in the corresponding
isospin bases Is ∈ {1/2, 3/2} and It ∈ {0, 1} that follows from rewriting (3.4) and (3.7) reads10

f
1/2
l+ (W ) = N

1/2
l+ (W ) +

1

π

∞∫

W+

dW ′
∞∑

l′=0

1

3

{
K

1/2
ll′ (W,W ′) Im f

1/2
l′+ (W ′) + 2K

3/2
ll′ (W,W ′) Im f

3/2
l′+ (W ′)

+K
1/2
ll′ (W,−W ′) Im f

1/2
(l′+1)−(W

′) + 2K
3/2
ll′ (W,−W ′) Im f

3/2
(l′+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∞∑

J=0

(
3− (−1)J

)

2

{
GlJ(W, t

′) Im fJ+(t
′) +HlJ(W, t

′) Im fJ−(t
′)
}
,

f
3/2
l+ (W ) = N

3/2
l+ (W ) +

1

π

∞∫

W+

dW ′
∞∑

l′=0

1

3

{
K

3/2
ll′ (W,W ′) Im f

1/2
l′+ (W ′) +K

1/2+3/2
ll′ (W,W ′) Im f

3/2
l′+ (W ′)

+K
3/2
ll′ (W,−W ′) Im f

1/2
(l′+1)−(W

′) +K
1/2+3/2
ll′ (W,−W ′) Im f

3/2
(l′+1)−(W

′)
}

10All sums run over both even and odd values, and the formulae for the fI
(l+1)− are given explicitly for convenience.
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+
1

π

∞∫

tπ

dt′
∞∑

J=0

(−1)J
{
GlJ(W, t

′) Im fJ+(t
′) +HlJ(W, t

′) Im fJ−(t
′)
}
,

f
1/2
(l+1)−(W ) = N

1/2
(l+1)−(W )

− 1

π

∞∫

W+

dW ′
∞∑

l′=0

1

3

{
K

1/2
ll′ (−W,W ′) Im f

1/2
l′+ (W ′) + 2K

3/2
ll′ (−W,W ′) Im f

3/2
l′+ (W ′)

+K
1/2
ll′ (−W,−W ′) Im f

1/2
(l′+1)−(W

′) + 2K
3/2
ll′ (−W,−W ′) Im f

3/2
(l′+1)−(W

′)
}

− 1

π

∞∫

tπ

dt′
∞∑

J=0

(
3− (−1)J

)

2

{
GlJ(−W, t′) Im fJ+(t

′) +HlJ(−W, t′) Im fJ−(t
′)
}
,

f
3/2
(l+1)−(W ) = N

3/2
(l+1)−(W )

− 1

π

∞∫

W+

dW ′
∞∑

l′=0

1

3

{
K

3/2
ll′ (−W,W ′) Im f

1/2
l′+ (W ′) +K

1/2+3/2
ll′ (−W,W ′) Im f

3/2
l′+ (W ′)

+K
3/2
ll′ (−W,−W ′) Im f

1/2
(l′+1)−(W

′) +K
1/2+3/2
ll′ (−W,−W ′) Im f

3/2
(l′+1)−(W

′)
}

− 1

π

∞∫

tπ

dt′
∞∑

J=0

(−1)J
{
GlJ(−W, t′) Im fJ+(t

′) +HlJ(−W, t′) Im fJ−(t
′)
}
, (3.13)

together with

fJ+(t) = ÑJ
+(t) +

1

π

∞∫

W+

dW ′
∞∑

l=0

1

3

{
G̃Jl(t,W

′)
[
Im f

1/2
l+ (W ′) +

1 + 3(−1)J

2
Im f

3/2
l+ (W ′)

]

+ G̃Jl(t,−W ′)
[
Im f

1/2
(l+1)−(W

′) +
1 + 3(−1)J

2
Im f

3/2
(l+1)−(W

′)
]}

+
1

π

∞∫

tπ

dt′
∞∑

J ′=J

1 + (−1)J+J ′

2

{
K̃1

JJ ′(t, t′) Im fJ
′

+ (t′) + K̃2
JJ ′(t, t′) Im fJ

′

− (t′)
}

∀ J ≥ 0 ,

fJ−(t) = ÑJ
−(t) +

1

π

∞∫

W+

dW ′
∞∑

l=0

1

3

{
H̃Jl(t,W

′)
[
Im f

1/2
l+ (W ′) +

1 + 3(−1)J

2
Im f

3/2
l+ (W ′)

]

+ H̃Jl(t,−W ′)
[
Im f

1/2
(l+1)−(W

′) +
1 + 3(−1)J

2
Im f

3/2
(l+1)−(W

′)
]}

+
1

π

∞∫

tπ

dt′
∞∑

J ′=J

1 + (−1)J+J ′

2
K̃3

JJ ′(t, t′) Im fJ
′

− (t′) ∀ J ≥ 1 . (3.14)

Note that in the above t-channel part (3.14) the sums over J ′ are limited to J ′ ≥ J due to (B.46).
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3.2 Partial-wave unitarity relations

From the unitarity of the S-matrix S = 1+ i T one can easily obtain the general unitarity relation by
taking matrix elements and inserting a complete set of intermediate states

〈f |T |i〉 − 〈f |T †|i〉 = i
∑

{j}

∫
dΠ(j)

nj
〈f |T †|j〉〈j|T |i〉 , (3.15)

where dΠ
(j)
nj denotes the nj-particle Lorentz-invariant phase space (LIPS) for intermediate state j,

which in the case of nj identical intermediate particles implicitly includes an additional symmetry

factor 1/S
(j)
nj = 1/nj ! in order to avoid multiple counting in the phase space integral. Imposing overall

4-momentum conservation δ(4)(Σpf−Σpi) and using time-reversal invariance of the strong interactions
immediately yields the generalized optical theorem for the dimensionless invariant amplitudes Tfi

ImTfi =
1

2

∑

{j}

∫
dΠ(j)

nj
(2π)4δ(4)(Σpj − Σpi)T

∗
fjTji . (3.16)

Under the additional assumption of hermitian analyticity of the S-matrix (i.e. the amplitudes Tfi obey
the Schwarz reflection principle T ∗

fi(s) = Tfi(s
∗) and are real on part of the real axis) it follows

DiscTfi(s) = lim
ǫ→0

[
Tfi(s+ iǫ)− Tfi(s− iǫ)

]
= 2i lim

ǫ→0
ImTfi(s+ iǫ) , (3.17)

for the physical limit corresponding to the s-channel process, and hence (3.16) may also be proven in
the framework of perturbation theory to all orders. By normalizing the 4-momentum states according
to 〈p′|p〉 = 2Ep(2π)

3δ(3)(p′ − p) for both bosons and fermions, for generic two-by-two scattering
ab→ cd with one particular intermediate 2-particle state j = j1j2 (with CMS 3-momentum modulus
pj) and after partial integration of the 2-particle LIPS the optical theorem (3.16) takes the form

ImTfi =
1

S
(j)
2

1

16π

2pj√
s

∫
dΩj

4π
T ∗
fjTji , pj =

√
λj1j2s

4s
, (3.18)

leading to the usual form of the differential cross section (with pf and pi in analogy to pj)

dσfi
dΩ

=
pfpi
π

dσfi
dt

=
pf
pi

∣∣∣∣
Tfi

8π
√
s

∣∣∣∣
2

. (3.19)

A partial-wave decomposition of the invariant amplitudes Tfi allows for a reduction of the unitarity
constraint (3.18) to unitarity relations for each partial wave separately. In the presence of spin the
T operator for two-by-two scattering can be diagonalized by using the eigenstates of total angular
momentum J as basis, which can be achieved most easily in the CMS via the helicity formalism [50].
With λP denoting the helicity of the corresponding particle, one can take the T -matrix elements in the
basis of single particle momenta and helicities and by applying the respective phase space integration
in the CMS, the corresponding invariant helicity amplitudes T λc,λd;λa,λb

fi can be written in terms of
states of relative motion for both incoming and outgoing particle pairs. Thereby, the differential cross
section for a reaction with a given set of helicities can be derived in full analogy to (3.19). With the
usual angular conventions of [29,50] and the azimuthal angle ϕ set to zero, the partial-wave expansion
of these helicity amplitudes in the helicity basis then reads

T λc,λd;λa,λb

fi (s, t) =
√
SfSi16π

∑

J

(2J + 1)T J
λc,λd;λa,λb

(s)dJλa−λb,λc−λd
(θ) , (3.20)
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where djmm′(θ) are the Wigner d-functions11 and the sum runs over integer/half-integer values of J for
an even/odd number of half-integer spins present in the initial or final state. In the case of spinless
particles with dJ00(θ) = PJ(cos θ) and J = l the expansion simplifies to

Tfi(s, t) =
√
SfSi16π

∞∑

J=0

(2J + 1)T J
fi(s)PJ (cos θ) . (3.21)

Note that we have added here explicit symmetry factors Si and Sf to the partial-wave expansion of [50]
in order to take care of identical particles in the initial and final state in a symmetric fashion. This
normalization reproduces the standard normalizations for spinless processes as well as for πN → πN ,
and furthermore ensures that no symmetry factors occur in the elastic unitarity relations for the
partial waves, since they always cancel with the symmetry factor implicitly included in the LIPS
(cf. (3.18)). We will explicitly demonstrate the effect of this convention for the symmetry factors on
the extended unitarity relation for ππ → N̄N partial waves by considering ππ → ππ with K̄K and
N̄N intermediate states below.

Due to the invariance of strong interactions under time reversal and parity, the helicity partial
waves obey the symmetry properties

T J
λa,λb;λc,λd

(s) = T J
λc,λd;λa,λb

(s) = T J
−λc,−λd;−λa,−λb

(s) . (3.22)

If the particles are spinless or if the matrix T J(s) in helicity space is diagonal in some appropriate basis
(as it is e.g. for πN → πN in the s-channel isospin basis Is ∈ {1/2, 3/2}), the unitarity relation (3.18)
for partial waves of generic elastic scattering ab→ ab (i.e. f = j = i) reads

ImT J
fi(s) =

2p√
s

∣∣T J
fi(s)

∣∣2 , (3.23)

which is solved by a parameterization of T J
fi(s) via the real phase shift δJfi(s)

T J
fi(s) =

√
s

2p
sin δJfi(s)e

iδJfi(s) , (3.24)

where (3.23) and (3.24) are valid for each diagonal element T J
fi(s) of T J(s). For s above the lowest

inelastic threshold sinel these equations have to be modified by introducing real inelasticities 0 ≤
ηJfi(s) ≤ 1 according to

T J
fi(s) =

√
s

2p

ηJfi(s)e
2iδJfi(s) − 1

2i
, ImT J

fi(s) =
2p√
s

∣∣T J
fi(s)

∣∣2 +
√
s

8p

[
1−

(
ηJfi(s)

)2]
, (3.25)

with ηJfi(s) < 1 for s > sinel due to additional intermediate states contributing in (3.15). These partial
waves are then related to the diagonal elements of the corresponding S-matrix via

SJ
fi(s) = ηJfi(s)e

2iδJfi(s) = 1 + i
4p√
s
T J
fi(s) . (3.26)

After these general remarks, we now turn to πN scattering: the reduced s-channel partial-wave am-
plitudes f Il±(W ) in the s-channel isospin basis Is ∈ {1/2, 3/2} are conventionally normalized according
to (cf. (3.25) and e.g. [20, 29])

f Isl±(W ) =
1

q

[
SIs
l±(W )

]
πN→πN

− 1

2i
=

1

q

ηIsl±(W )e2iδ
Is
l±(W ) − 1

2i

W<Winel=
sin δIsl±(W )

q
eiδ

Is
l±(W ) , (3.27)

11A comprehensive review on Wigner functions, in particular a comparison of different angular conventions used in
the literature, is given in [51].
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where for the elastic form we have used the fact that the lowest inelastic intermediate state is ππN
and thus ηIsl±(W ) = 1 below the inelastic threshold Winel = W+ +Mπ. The s-channel partial-wave
unitarity relation corresponding to the normalization given above reads

Im f Isl±(W ) = q
∣∣f Isl±(W )

∣∣2 θ
(
W −W+

)
+

1−
(
ηIsl±(W )

)2

4q
θ
(
W −Winel

)
, (3.28)

leading to the branch cut for W > W+.
For the (necessarily inelastic) t-channel partial-wave unitarity relations one needs the dimensionless

partial-wave amplitudes tItJ (t) of elastic ππ scattering. They are conventionally defined from the
dimensionless isospin amplitudes of ππ → ππ via (with t-channel isospin It ∈ {0, 1, 2}, total angular
momentum J = l, and symmetry factors

√
SfSi = 2 for identical pions, cf. (3.21) and [12,20])

T It(s, t) = 32π

∞∑

J=0

(2J + 1)tItJ (t)PJ(cos θ
ππ) , (3.29)

that are normalized according to

dσItππ→ππ

dΩ
=

∣∣∣∣
T It(s, t)

8π
√
t

∣∣∣∣
2

. (3.30)

The corresponding elastic unitarity relation then takes the form

Im tItJ (t) = σπt
∣∣tItJ (t)

∣∣2 θ
(
t− tπ

)
, σπt =

2qt√
t
=

√
1− tπ

t
, (3.31)

and hence the partial waves can be parameterized as

tItJ (t) =
1

σπt

[
SIt
J (t)

]
ππ→ππ

− 1

2i
=

1

σπt

ηItJ (t)e2iδ
It
J (t) − 1

2i

η
It
J (t)=1
=

sin δItJ (t)

σπt
eiδ

It
J (t) . (3.32)

The reduced t-channel πN partial-wave amplitudes fJ±(t) are related to πN helicity amplitudes
Fλ̄λ(s, t) and dimensionless partial waves F J

±(t) via (cf. [29, 49])

F++(s, t) = F−−(s, t) =
4π

√
t

qt

∞∑

J=0

(2J + 1)F J
+(t)PJ (cos θt) , F J

+(t) =
qt
pt
(ptqt)

J 2√
t
fJ+(t) ,

F+−(s, t) = −F−+(s, t) =
4π

√
t

qt

∞∑

J=1

2J + 1√
J(J + 1)

F J
−(t) sin θtP

′
J(cos θt) , F J

−(t) =
qt
pt
(ptqt)

JfJ−(t) ,

(3.33)

and they are normalized according to

dσ̄ππ→N̄N

dΩ
=
pt
qt

∑

λ̄,λ

∣∣∣∣
Fλ̄λ(s, t)

8π
√
t

∣∣∣∣
2

=
2pt
qt

{∣∣∣∣
F++(s, t)

8π
√
t

∣∣∣∣
2

+

∣∣∣∣
F+−(s, t)

8π
√
t

∣∣∣∣
2
}

=
4p2t
q2t

dσ̄N̄N→ππ

dΩ
. (3.34)

The general formulae (3.33) and (3.34) are also valid for isospin even/odd parts F I
λ̄λ
(s, t) with crossing

index I = +/− and J even/odd, accordingly. Note that when referring to the t-channel isospin basis
It ∈ {0, 1} as in the following, the isospin crossing coefficients cJ of (2.39) need to be included. In
general, the t-channel partial waves may be parameterized as

fJ±(t) =
∣∣fJ±(t)

∣∣eiϕJ (t) = Re fJ±(t) + i Im fJ±(t) . (3.35)
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By considering only ππ intermediate states in the region t < (4Mπ)
2 (which is elastic with respect to

ππ scattering, but unphysical with respect to the πN t-channel) in the general unitarity relation (3.15)
for N̄N → ππ, the fJ±(t) can be shown to obey the “elastic” t-channel unitarity relation

Im fJ±(t) = σπt
(
tItJ (t)

)∗
fJ±(t) θ

(
t− tπ

)
∀ t ∈ [tπ, 16M

2
π) (3.36)

(where the coefficients cJ cancel), which leads to the branch cut for t > tπ. Since the imaginary part
Im fJ±(t) itself must be real, from (3.36) together with (3.32) and (3.35) one can immediately infer

fJ±(t) =
∣∣fJ±(t)

∣∣eiδ
It
J
(t) ∀ t ∈ [tπ, 16M

2
π) , (3.37)

i.e. the phases of the t-channel partial waves fJ±(t) are given by the phases of the ππ partial waves tItJ (t)
modulo π (by convention we choose the phases to coincide exactly), which is also known as Watson’s
final state interaction theorem [52]. It is common practice to assume that the contributions due to
4π and other intermediate states can safely be ignored for t . 40M2

π ≈ 0.78GeV2 (see e.g. [29, 40]).
However, as demonstrated in [53] in the context of the scalar pion form factor, this is certainly only
true in the S-wave below the threshold tK = 4M2

K ≈ 0.97GeV2 for the production of K̄K intermediate
states, while in the P -wave inelasticities effectively start to set in around the πω threshold at 0.85GeV2.

It is crucial to note that (3.36) is invariant under rescaling of fJ±(t) with real factors, whereas elastic
unitarity relations as (3.28) (for W < Winel) and (3.31) are always nonlinear in the corresponding
partial wave. Hence, fixing the normalization of all different partial waves that are needed in extended
t-channel unitarity relations (i.e. allowing for additional intermediate states) in a consistent manner
can only be done resorting to the corresponding elastic reactions, as we will now demonstrate for a
system of coupled-channel equations with π, K, and N degrees of freedom. Writing T11 = Tππ→ππ,
T12 = TK̄K→ππ, T13 = TN̄N→ππ etc. for the T -matrix elements and using the invariance of strong
interactions under time reversal, the general unitarity relation reads in terms of matrix elements

S∗
fjSji = δfi , Sfi = δfi + iTfi = δif + iTif = Sif . (3.38)

In particular, one can read off the extended elastic unitarity relation for ππ → ππ and the extended
unitarity relation for N̄N → ππ with ππ, K̄K, and N̄N intermediate states

δ11 = 1 = |S11|2 + |S12|2 + |S13|2 , δ13 = 0 = S∗
11S13 + S∗

12S23 + S∗
13S33 , (3.39)

and thus, by dropping the N̄N intermediate states in the second relation (since we are finally interested
in the extended t-channel unitarity relation of πN scattering in the region below the N̄N threshold),
we obtain

2 Im T11 = |T11|2 + |T12|2 + |T13|2 , 2 ImT13 = T ∗
11T13 + T ∗

12T23 . (3.40)

Introducing now the reduced t-channel partial waves gItJ (t) of πK scattering (with isospin It = 0/1
corresponding to J = l even/odd due to Bose symmetry in ππ, symmetry factors

√
SfSi =

√
2 and

the partial waves defined from dimensionless isospin amplitudes, cf. (3.21) and [19])

GIt(s, t) = 16π
√
2

∞∑

J=0

(2J + 1)(ktqt)
JgItJ (t)PJ (cos θ

πK
t ) , kt =

√
t

4
−M2

K =

√
t

2
σKt , (3.41)

the first relation of (3.40) may be decomposed into partial waves, and performing the angular inte-
grations of the phase space integrals leads to the partial-wave unitarity relation for ππ scattering with
ππ, K̄K, and N̄N intermediate states

Im tItJ (t) = σπt

∣∣∣tItJ (t)
∣∣∣
2
θ
(
t−tπ

)
+(ktqt)

2JσKt

∣∣∣gItJ (t)
∣∣∣
2
θ
(
t−tK

)
+

t

16q2t

σNt
c2J

{∣∣∣F J
+(t)

∣∣∣
2
+
∣∣∣F J

−(t)
∣∣∣
2
}
θ
(
t−tN

)
.

(3.42)
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For t < tK (or if It + J equals an odd number) this reproduces the elastic unitarity relation for ππ
scattering (3.31), which corresponds to the relation (cf. (3.32))

[
SIt
J (t)

]
ππ→ππ

= 1 + i
4qt√
t
tItJ (t) θ

(
t− tπ

)
. (3.43)

Comparing (3.42) with the elastic unitarity relation for the partial waves (cf. (3.39))

∣∣∣
[
SIt
J (t)

]
ππ→ππ

∣∣∣
2
+
∣∣∣
[
SIt
J (t)

]
ππ→K̄K

∣∣∣
2
+ 2

{∣∣∣
[
SJ
+(t)

]It
ππ→N̄N

∣∣∣
2
+
∣∣∣
[
SJ
−(t)

]It
ππ→N̄N

∣∣∣
2
}

= 1 (3.44)

for the cases t < tN and t ≥ tN successively then allows to fix the normalization of the partial-wave
S-matrix elements of the inelastic channels (both in the natural t-channel isospin basis It ∈ {0, 1})
to12

[
SIt
J (t)

]
ππ→K̄K

= i
4(ktqt)

J+ 1
2

√
t

gItJ (t) θ
(
t− tK

)
,

[
SJ
±(t)

]It
ππ→N̄N

=
i

cJ
√
2

√
pt
qt
F J
±(t) θ

(
t− tN

)
.

(3.45)
These S-matrix elements indeed reproduce the correctly normalized differential cross sections

dσIt
ππ→K̄K

dΩ
=
kt
qt

∣∣∣∣
GIt(s, t)

8π
√
t

∣∣∣∣
2

(3.46)

and (3.34), respectively. Furthermore, from the unitarity bound of the t-channel partial-wave S matrix
of πN scattering only (cf. (3.44)) together with its explicit form (3.45) and the relations (3.33) to the
corresponding partial waves fJ± we can deduce that the partial waves fall off asymptotically at least
as fast as (cf. [29])

fJ+(t) ∼ t−J+ 1
2 , fJ−(t) ∼ t−J , for t→ ∞ , (3.47)

i.e. fJ±(t) → 0 for t → ∞ by unitarity at least for all J > 0 ; this asymptotic vanishing is usually
assumed to hold for the S-wave as well. By virtue of similar considerations, the normalization of the
remaining partial waves in the second relation of (3.40) can be fixed. We may introduce the reduced
t-channel partial waves hJ±(t) of KN scattering in analogy to the πN case via dimensionless helicity
amplitudes (cf. (3.33) and [54])

H++(s, t) =
4π

√
t

kt

∞∑

J=0

(2J + 1)HJ
+(t)PJ (cos θ

KN
t ) , HJ

+(t) =
kt
pt
(ptkt)

J 2√
t
hJ+(t) ,

H+−(s, t) =
4π

√
t

kt

∞∑

J=1

2J + 1√
J(J + 1)

HJ
−(t) sin θ

KN
t P ′

J(cos θ
KN
t ) , HJ

−(t) =
kt
pt
(ptkt)

JhJ−(t) , (3.48)

where it is important to note that, in contrast to πN scattering, also the combinations It = 0 with
odd J and It = 1 with even J are allowed due to lack of Bose symmetry in K̄K. In order not to bloat

the notation, we refrain from using an additional index for It, and in the following e.g. h
J=even/odd
±

is always to be understood as h
(J=even/odd,It=0/1)
± , respectively, and not h

(J=odd/even,It=0/1)
± , since only

the former can couple to the t-channel process ππ → N̄N . The normalization is fixed by

dσ̄KK̄→N̄N

dΩ
=
pt
kt

∑

λ̄,λ

∣∣∣∣
Hλ̄λ(s, t)

8π
√
t

∣∣∣∣
2

=
2pt
kt

{∣∣∣∣
H++(s, t)

8π
√
t

∣∣∣∣
2

+

∣∣∣∣
H+−(s, t)

8π
√
t

∣∣∣∣
2
}

=
4p2t
k2t

dσ̄N̄N→KK̄

dΩ
, (3.49)

12Note that our symmetric normalization of the helicity partial waves (3.20) together with (3.33) and (3.34) leads

to an additional factor of 1/
√
2 to

[

SJ
±(t)

]It

ππ→N̄N
in comparison with [29, 49], where one should read in addition

[

SJ
±(t)

]

ππ→N̄N
≡ cJ

[

SJ
±(t)

]It

ππ→N̄N
.
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so that the dimensionless partial-wave amplitudes HJ
±(t) are related to the diagonal elements of the

corresponding S-matrix according to

[
SJ
±(t)

]It
KK̄→N̄N

=
i

cKN
J

√
pt
kt
HJ

±(t) θ
(
t− tN

)
, cKN

J =
1

2
∀ J . (3.50)

Plugging the partial-wave matrix elements into the partial-wave projection of the second relation
of (3.40) for either parallel or antiparallel antinucleon–nucleon helicities yields the extended t-channel
unitarity relation for the t-channel partial waves fJ±(t) (extending (3.36) for K̄K intermediate states)

Im fJ±(t) = σπt
(
tItJ (t)

)∗
fJ±(t) θ

(
t− tπ

)
+ 2cJ

√
2 k2Jt σKt

(
gItJ (t)

)∗
hJ±(t) θ

(
t− tK

)
. (3.51)

Finally, we can use (3.44) to derive the inelasticities ηItJ (t) of the ππ scattering amplitude that are
consistent with (3.51). Below the N̄N threshold, inserting (3.32) and (3.45) into (3.44) leads to

ηItJ (t) =

√
1− 4σπt σ

K
t (ktqt)2J

∣∣gItJ (t)
∣∣2 θ
(
t− tK

)
. (3.52)

3.3 From Roy–Steiner equations to the Muskhelishvili–Omnès problem

3.3.1 Threshold behavior of the t-channel partial waves

The asymptotic behavior of fJ±(t) for pt → 0 and qt → 0 (which is equivalent to t → tN = 4m2

and t→ tπ = 4M2
π , respectively) can be derived directly from the partial-wave projection (3.6). Since

AI(t, zt) and B
I(t, zt) have definite symmetry properties under s↔ u and since s−u = 4mν = 4ptqtzt,

we can write down the expansions

AI(t, zt) =
∑

J ′

(ptqt)
J ′

PJ ′(zt)aJ ′(t) , BI(t, zt) =
∑

J ′

(ptqt)
J ′

PJ ′(zt)bJ ′(t) , (3.53)

where only even/odd values of J ′ contribute according to the symmetry properties of AI and BI (i.e.
even J ′ for A+, B− and odd J ′ for A−, B+). Let us first consider the limit pt → 0, i.e. the behavior
of fJ±(t) at the t-channel threshold tN . As far as the leading asymptotic behavior is concerned,
the functions aJ ′(t) and bJ ′(t) can be evaluated at t = tN and will thus be considered as constant
coefficients in the following. Inserting these expansions into (3.6) (where J even/odd corresponds to
I = +/−), we find for J = 0 that

f0+(t → tN ) = O(p2t ) (3.54)

at the physical threshold, while for J ≥ 1 we obtain

fJ+(t→ tN ) =
mbJ−1

8π

1∫

−1

dztPJ(zt)ztPJ−1(zt) +O(p2t ) =
mbJ−1

8π

J

2J + 1

2

2J − 1
+O(p2t ) , (3.55)

fJ−(t→ tN ) =
bJ−1

8π

√
J(J + 1)

2J + 1

1∫

−1

dztPJ−1(zt)PJ−1(zt) +O(p2t ) =
bJ−1

8π

√
J(J + 1)

2J + 1

2

2J − 1
+O(p2t ) ,

such that
fJ+(t → tN ) = O(1) , fJ−(t → tN ) = O(1) , ∀ J ≥ 1 . (3.56)

However, the linear combination

ΓJ(t) = m

√
J

J + 1
fJ−(t)− fJ+(t) ∀ J ≥ 1 (3.57)
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vanishes at threshold (cf. [29, 55,56])

ΓJ(t → tN ) = O(p2t ) ∀ J ≥ 1 . (3.58)

The same reasoning may be applied to the limit qt → 0 as well, but as AI contributes at the same
order as BI in the expansion of fJ+(t), no relation between the threshold values of different amplitudes
may be inferred for qt → 0

fJ+(t → tπ) = O(1) ∀ J ≥ 0 , fJ−(t→ tπ) = O(1) ∀ J ≥ 1 . (3.59)

In fact, the properties of fJ±(t) at the t-channel threshold are crucial to ensure convergence in the
RS equations. From the partial-wave expansion (A.73) we can easily derive the leading contributions
to the invariant amplitudes (given explicitly for J ≤ 2)

A+(ν, t)

4π
= −f

0
+(t)

p2t
+

15

2
m2ν2

Γ2(t)

p2t
+

5

2
q2t f

2
+(t) + . . . ,

A−(ν, t)
4π

= 3mν
Γ1(t)

p2t
+ . . . ,

B+(ν, t)

4π
=

15√
6
mνf2−(t) + . . . ,

B−(ν, t)
4π

=
3√
2
f1−(t) + . . . , (3.60)

demonstrating how the threshold behavior (3.54) and (3.58) ensures that the partial-wave expansion
does not introduce spurious kinematical poles at pt → 0 into the expansion of the invariant amplitudes
and thereby into the HDRs (2.44). To illustrate the consequences of this point, we briefly comment
on the several places in our RS system (3.4) and (3.7) where the threshold behavior of fJ±(t) features:

1. Although GlJ(W, t
′) and HlJ(W, t

′) diverge as p′−2
t for t′ → tN according to (A.92), the relation

Res
[
HlJ(W, t

′), t′ = tN

]
= −m

√
J

J + 1
Res

[
GlJ(W, t

′), t′ = tN

]
(3.61)

together with (3.54) and (3.58) ensures that the corresponding integrals in (3.4) are well defined.
We have checked that the explicit expressions in (A.89) fulfill this equation.

2. The p′−2
t divergence (B.51) of K̃1

JJ ′(t, t′) and K̃2
JJ ′(t, t′) for t′ → tN cancels in (3.7) provided

that

Res
[
K̃2

JJ ′(t, t′), t′ = tN

]
= −m

√
J ′

J ′ + 1
Res

[
K̃1

JJ ′(t, t′), t′ = tN

]
. (3.62)

This relation can easily be verified for the kernels given in (B.48) and (B.50), cf. (B.49).

3. Based on the asymptotic forms (B.8) of the pole-term projections ÑJ
±(t), one may check their

threshold behavior to be analogous to (3.54) and (3.58). Note that in this special case the
relations hold for qt → 0 as well, since AI does not contribute to the pole terms:

Ñ0
+(ptqt → 0) = O(p2t q

2
t ) , m

√
J

J + 1
ÑJ

−(ptqt → 0)− ÑJ
+(ptqt → 0) = O(p2t q

2
t ) ∀ J ≥ 1 .

(3.63)

3.3.2 Muskhelishvili–Omnès problem for the t-channel partial waves

Using the properties of the kernel functions for t-channel exchange as given in Appendix B.3 together
with the threshold behavior of the partial waves as discussed in Sect. 3.3.1, we can rewrite the t-channel
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part (3.7) of the (unsubtracted) RS system as

f0+(t) = ∆0
+(t)−

1

π

∞∫

tπ

dt′
Im f0+(t

′)

t′ − tN
+

1

π

∞∫

tπ

dt′
Im f0+(t

′)

t′ − t
,

fJ+(t) = ∆J
+(t) +

1

π

∞∫

tπ

dt′
m
√

J
J+1Im fJ−(t

′)− Im fJ+(t
′)

t′ − tN
+

1

π

∞∫

tπ

dt′
Im fJ+(t

′)

t′ − t
∀ J ≥ 1 ,

fJ−(t) = ∆J
−(t) +

1

π

∞∫

tπ

dt′
Im fJ−(t

′)

t′ − t
∀ J ≥ 1 , (3.64)

where we have defined the abbreviations

∆J
±(t) = ÑJ

±(t) + ∆̄J
±(t) ,

∆̄J
+(t) =

1

π

∞∫

W+

dW ′
∞∑

l=0

{
G̃Jl(t,W

′) Im f Il+(W
′) + G̃Jl(t,−W ′) Im f I(l+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∞∑

J ′=J+2

1 + (−1)J+J ′

2

{
K̃1

JJ ′(t, t′) Im fJ
′

+ (t′) + K̃2
JJ ′(t, t′) Im fJ

′

− (t′)
}

∀ J ≥ 0 ,

∆̄J
−(t) =

1

π

∞∫

W+

dW ′
∞∑

l=0

{
H̃Jl(t,W

′) Im f Il+(W
′) + H̃Jl(t,−W ′) Im f I(l+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∞∑

J ′=J+2

1 + (−1)J+J ′

2
K̃3

JJ ′(t, t′) Im fJ
′

− (t′) ∀ J ≥ 1 , (3.65)

for the inhomogeneities ∆J
±(t), which besides the t-channel projections ÑJ

±(t) of the nucleon pole terms
contain the coupling to all s-channel partial waves as well as to the higher t-channel partial waves.
Note that ∆J

±(t) only contains the left-hand cut and therefore is real for all t ≥ tπ . By virtue of (3.57)
and the analogous definition

∆J
Γ(t) = m

√
J

J + 1
∆J

−(t)−∆J
+(t) , (3.66)

the equations (3.64) can be cast into the form of a MO problem for f0+(t), f
J
−(t), and the linear

combinations ΓJ(t)

f0+(t) = ∆0
+(t) +

t− tN
π

∞∫

tπ

dt′
Im f0+(t

′)

(t′ − tN )(t′ − t)
,

ΓJ(t) = ∆J
Γ(t) +

t− tN
π

∞∫

tπ

dt′
ImΓJ(t′)

(t′ − tN )(t′ − t)
∀ J ≥ 1 ,

fJ−(t) = ∆J
−(t) +

1

π

∞∫

tπ

dt′
Im fJ−(t

′)

t′ − t
∀ J ≥ 1 , (3.67)
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where for f0+(t) and ΓJ(t) combining the integrals effectively yields one subtraction at the threshold
tN and the additional roots at t′ = tN in the denominators are canceled by the threshold behavior of
the numerators. The solution for fJ+(t) can then easily be recovered via (3.57).

How these equations (or their subtracted analogs derived in Sect. 4.4) can be used to determine
f0+(t), f

1
±(t), and f

2
±(t) with the help of MO techniques will be described in the following sections. Note

that such an easy rewriting scheme is not possible for the s-channel part (3.4) of the RS PWHDRs,
since in the corresponding s-channel integrals also 0 ≤ l′ ≤ l contribute.

4 Subtracted Roy–Steiner system for pion–nucleon scattering

The Froissart–Martin bound [57, 58] limits the number of subtractions necessary for the convergence
of the integrals in the high-energy regime to 2, since the total cross section does not increase faster
than log2 s for s→ ∞.13 The influence of the high-energy contributions to dispersion integrals may be
reduced by means of suitable subtractions for the trade-off of introducing corresponding subtraction
polynomials with subtraction constants that are a priori unknown. For the MO integrals in (3.67)
subtracting in t at subtraction points below tπ with the additional constraint s = u in order to
preserve crossing symmetry is favorable. A particularly useful choice is the subthreshold expansion,
which amounts to subtracting in t at zero: first, it is very convenient for extrapolation to the Cheng–
Dashen point in order to elaborate on the πN σ term (cf. Sect. 2.1); second, subtracting at the
subthreshold point facilitates matching to chiral perturbation theory, which is expected to work best
in the subthreshold region.14 To this end, we first briefly review the subthreshold expansion of the
scattering amplitudes and then discuss its application in order to write down both the once- and
twice-subtracted form of the HDRs (2.44).

4.1 Subthreshold expansion

The subthreshold expansion refers to the expansion of Born-subtracted amplitudes around the sub-
threshold point (s = u = s0, t = 0) = (ν = 0, t = 0) (cf. Sect. 2.1), where the nucleon pole terms
are subtracted since they are rapidly varying in this kinematical region. Subtracting the pseudovector
Born terms (indicated by bars) yields

Ā+(s, t) = A+(s, t)− g2

m
, B̄+(s, t) = B+(s, t)− g2

[
1

m2 − s
− 1

m2 − u

]
,

Ā−(s, t) = A−(s, t) , B̄−(s, t) = B−(s, t)− g2
[

1

m2 − s
+

1

m2 − u

]
+

g2

2m2
, (4.1)

while for the pseudoscalar Born-subtracted (indicated by tildes) amplitudes Ã± and B̃± the terms
−g2/m and +g2/2m2 need to be dropped (cf. 2.48). Due to the crossing symmetry of the ampli-
tudes (2.18) (similarly for HDRs (2.44)) one can write the subthreshold expansion generically for

13While the original Froissart bound assumes validity of the Mandelstam representation for the scattering amplitude,
the result by Martin is based on somewhat less restrictive assumptions.

14For the application of heavy-baryon ChPT to πN scattering in the subthreshold region see [59]. Conversely, analyt-
icity and unitarity are used in [60] to stabilize the extrapolation of πN partial waves derived from ChPT amplitudes in
the subthreshold region into the physical region, thus enabling the determination of the chiral parameters by matching
to experimental information in terms of s-channel phase shifts.
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crossing-even amplitudes as (cf. [29])

X(ν, t) =
∑

m,n

xmn

(
ν2
)m
tn , X ∈

{
Ā+, Ã+,

Ā−

ν
,
Ã−

ν
,
B̄+

ν
,
B̃+

ν
, B̄−, B̃−, D̄+, D̃+,

D̄−

ν
,
D̃−

ν

}
,

(4.2)
and thus explicitly for the pseudovector Born-subtracted amplitudes as

Ā+(ν, t) =

∞∑

m,n=0

a+mnν
2mtn , B̄+(ν, t) =

∞∑

m,n=0

b+mnν
2m+1tn ,

Ā−(ν, t) =
∞∑

m,n=0

a−mnν
2m+1tn , B̄−(ν, t) =

∞∑

m,n=0

b−mnν
2mtn , (4.3)

where the corresponding subthreshold parameters of the amplitudes D̄± = Ā± + νB̄± are related by

d+mn = a+mn + b+m−1,n , d−mn = a−mn + b−mn . (4.4)

Note that due to b+−1,n = 0 in particular

d+0n = a+0n . (4.5)

From the expansions

1

s′ − s
− 1

s′ − u
=

4mν

(s′ − s0)2
+O

(
ν3, νt

)
,

1

s′ − s
+

1

s′ − u
=

2

s′ − s0
− t

(s′ − s0)2
+O

(
ν2, ν2t, t2

)
,

(4.6)
one then can read off the subthreshold expansions of the Born-unsubtracted amplitudes up to and
including first order

A+(ν, t) =
g2

m
+ d+00 + d+01t+O

(
ν2, ν2t, t2

)
,

A−(ν, t) = νa−00 +O
(
ν3, νt

)
, B+(ν, t) = g2

4mν

(m2 − s0)2
+ νb+00 +O

(
ν3, νt

)
,

B−(ν, t) = g2
[

2

m2 − s0
− t

(m2 − s0)2

]
− g2

2m2
+ b−00 + b−01t+O

(
ν2, ν2t, t2

)
. (4.7)

4.2 Sum rules for subthreshold parameters

Subtracting simultaneously at s0 = Σ/2 < s+ and t0 = 0 < tπ corresponds to the subthreshold
expansion around (ν = 0, t = 0) and thus allows for the determination of sum rules for the subthreshold
parameters. Matching the expansions (4.7) to the corresponding expansions of the HDRs (2.44) by
equating the coefficients (where it is crucial to keep track of all implicit dependencies in the expansions)
together with introducing the abbreviation

h0(s
′) =

2

s′ − s0
− 1

s′ − a
(4.8)

then yields the following sum rules for the lowest subthreshold parameters

d+00 = −g
2

m
+

1

π

∞∫

s+

ds′ h0(s
′)
[
ImA+(s′, z′s)

]
(0,0)

+
1

π

∞∫

tπ

dt′

t′
[
ImA+(t′, z′t)

]
(0,0)

,

28



b−00 =
g2

2m2
− g2

m2 − a
+

1

π

∞∫

s+

ds′ h0(s
′)
[
ImB−(s′, z′s)

]
(0,0)

+
1

π

∞∫

tπ

dt′

t′
[
ImB−(t′, z′t)

]
(0,0)

,

d+01 =
1

π

∞∫

s+

ds′
{
h0(s

′)
[
∂tImA+(s′, z′s)

]
(0,0)

−
[ImA+(s′, z′s)](0,0)

(s′ − s0)2

}

+
1

π

∞∫

tπ

dt′

t′

{
[
∂tImA+(t′, z′t)

]
(0,0)

+
1

t′
[
ImA+(t′, z′t)

]
(0,0)

}
,

b−01 =
1

π

∞∫

s+

ds′
{
h0(s

′)
[
∂tImB−(s′, z′s)

]
(0,0)

−
[ImB−(s′, z′s)](0,0)

(s′ − s0)2

}

+
1

π

∞∫

tπ

dt′

t′

{
[
∂tImB−(t′, z′t)

]
(0,0)

+
1

t′
[
ImB−(t′, z′t)

]
(0,0)

}
,

a−00
4m

=
1

π

∞∫

s+

ds′
[ImA−(s′, z′s)](0,0)

(s′ − s0)2
+

1

π

∞∫

tπ

dt′

t′

[
ImA−(t′, z′t)

4p′tq
′
tz

′
t

]

(0,0)

,

b+00
4m

=
1

π

∞∫

s+

ds′
[ImB+(s′, z′s)](0,0)

(s′ − s0)2
+

1

π

∞∫

tπ

dt′

t′

[
ImB+(t′, z′t)

4p′tq
′
tz

′
t

]

(0,0)

. (4.9)

The subscript (0, 0) indicates that z′s and z′t in the s- and t-channel integrals, respectively, are to be
evaluated at (ν = 0, t = 0), which according to (2.52) and (2.43) amounts to using

[
z′s
]
(0,0)

= 1− (s′ − s0)
2

2q′2(s′ − a)
,

[
∂tz

′
s

]
(0,0)

=
s0 − a

2q′2(s′ − a)
,

[
z′2t
]
(0,0)

=
t′(t′ − 4(s0 − a))

16p′2t q
′2
t

= 1 +
t′4a− tN tπ
16p′2t q

′2
t

,
[
∂tz

′2
t

]
(0,0)

=
s0 − a

4p′2t q
′2
t

, (4.10)

where again we have used the fact that the t-channel integrands depend on the squared angle z′2t only.
Note that these sum rules as such are valid independent of the choice of a, but in practice one will incur
an a-dependence once approximations are made (such as truncation of the partial-wave expansion,
approximation of the high-energy region by Regge theory, etc.).

4.3 Subtracted hyperbolic dispersion relations

A single subtraction at (ν = 0, t = 0) only affects A+(ν, t) and B−(ν, t), since both A−(ν, t) and
B+(ν, t) are proportional to ν. Based on the unsubtracted HDRs (2.44), the explicit subthreshold
expansions (4.7), and the corresponding sum rules (4.9), we obtain the once-subtracted HDRs

A+(s, t; a) =
g2

m
+ d+00 +

1

π

∞∫

tπ

dt′
{
ImA+(t′, z′t)

t′ − t
−

[ImA+(t′, z′t)](0,0)
t′

}
(4.11)

+
1

π

∞∫

s+

ds′
{[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImA+(s′, z′s)− h0(s

′)
[
ImA+(s′, z′s)

]
(0,0)

}
,
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B−(s, t; a) = g2
[

1

m2 − s
+

1

m2 − u

]
− g2

2m2
+ b−00 +

1

π

∞∫

tπ

dt′
{
ImB−(t′, z′t)

t′ − t
−

[ImB−(t′, z′t)](0,0)
t′

}

+
1

π

∞∫

s+

ds′
{[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImB−(s′, z′s)− h0(s

′)
[
ImB−(s′, z′s)

]
(0,0)

}
,

together with the unaltered equations (2.44) for A− and B+. Note that the dependence on a of the
Born-term contribution N− is canceled by the sum rule (4.9) for b−00, which is why the subtraction
constants are formally included in the subtracted nucleon pole terms in the following for convenience
(i.e. preserving the generic form of the HDRs (2.44)).

Similarly, a second subtraction at (ν = 0, t = 0) yields the twice-subtracted HDRs

A+(s, t; a) =
g2

m
+ d+00 + d+01t

+
1

π

∞∫

tπ

dt′
{
ImA+(t′, z′t)

t′ − t
−
(
1

t′
+

t

t′2

)[
ImA+(t′, z′t)

]
(0,0)

− t

t′
[
∂tImA+(t′, z′t)

]
(0,0)

}

+
1

π

∞∫

s+

ds′
{[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImA+(s′, z′s)− h0(s

′) t
[
∂tImA+(s′, z′s)

]
(0,0)

−
(
h0(s

′)− t

(s′ − s0)2

) [
ImA+(s′, z′s)

]
(0,0)

}
,

B−(s, t; a) = g2
[

1

m2 − s
+

1

m2 − u

]
− g2

2m2
+ b−00 + b−01t

+
1

π

∞∫

tπ

dt′
{
ImB−(t′, z′t)

t′ − t
−
(
1

t′
+

t

t′2

)[
ImB−(t′, z′t)

]
(0,0)

− t

t′
[
∂tImB−(t′, z′t)

]
(0,0)

}

+
1

π

∞∫

s+

ds′
{[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImB−(s′, z′s)− h0(s

′) t
[
∂tImB−(s′, z′s)

]
(0,0)

−
(
h0(s

′)− t

(s′ − s0)2

) [
ImB−(s′, z′s)

]
(0,0)

}
,

A−(s, t; a) = a−00ν +
ν

π

∞∫

tπ

dt′
{
ImA−(t′, z′t)
ν ′(t′ − t)

−
[ImA−(t′, z′t)/ν

′](0,0)
t′

}

+
1

π

∞∫

s+

ds′
{[

1

s′ − s
− 1

s′ − u

]
ImA−(s′, z′s)−

4mν [ImA−(s′, z′s)](0,0)
(s′ − s0)2

}
,

B+(s, t; a) = g2
[

1

m2 − s
− 1

m2 − u

]
+ b+00ν +

ν

π

∞∫

tπ

dt′
{
ImB+(t′, z′t)
ν ′(t′ − t)

−
[ImB+(t′, z′t)/ν

′](0,0)
t′

}

+
1

π

∞∫

s+

ds′
{[

1

s′ − s
− 1

s′ − u

]
ImB+(s′, z′s)−

4mν [ImB+(s′, z′s)](0,0)
(s′ − s0)2

}
, (4.12)
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where A− and B+ can also be written as

A−(s, t; a)
4mν

=
a−00
4m

+
1

π

∞∫

tπ

dt′
{

ImA−(t′, z′t)
4p′tq

′
tz

′
t(t

′ − t)
− 1

t′

[
ImA−(t′, z′t)

4p′tq
′
tz

′
t

]

(0,0)

}

+
1

π

∞∫

s+

ds′
{

ImA−(s′, z′s)
(s′ − s)(s′ − u)

−
[ImA−(s′, z′s)](0,0)

(s′ − s0)2

}
,

B+(s, t; a)

4mν
=

g2

(m2 − s)(m2 − u)
+
b+00
4m

+
1

π

∞∫

tπ

dt′
{

ImB+(t′, z′t)
4p′tq

′
tz

′
t(t

′ − t)
− 1

t′

[
ImB+(t′, z′t)

4p′tq
′
tz

′
t

]

(0,0)

}

+
1

π

∞∫

s+

ds′
{

ImB+(s′, z′s)
(s′ − s)(s′ − u)

−
[ImB+(s′, z′s)](0,0)

(s′ − s0)2

}
. (4.13)

These subtractions require a modification of the nucleon-pole-term projections and the kernel func-
tions for both the s- and t-channel contributions calculated in Appendices A and B as well as the
asymptotic contributions given in Appendix D. The differences on the right-hand side of the once-
/twice-subtracted HDRs (4.11)/(4.12) compared to the unsubtracted HDRs (2.44) are the sources
for the necessary modifications which are derived in Appendices A.5, B.5, and D.3 for the s-channel
kernels and pole terms, their t-channel analogs, and the asymptotic contributions, respectively.

4.4 Subtracted t-channel Muskhelishvili–Omnès problem

Using the subtracted kernels and pole terms as derived in Appendix B.5 leads to the subtracted analogs
of the unsubtracted t-channel MO problem (3.64), which we will state explicitly in the following for
J ≤ 2 (the equations for J ≥ 3 are unaltered for up to two subtractions). For one subtraction we may
write

f0+(t) = ∆0
+

∣∣1-sub(t)− t

π

∞∫

tπ

dt′
Im f0+(t

′)

t′(t′ − tN )
+
t

π

∞∫

tπ

dt′
Im f0+(t

′)

t′(t′ − t)
,

f1+(t) = ∆1
+

∣∣1-sub(t) + tN
π

∞∫

tπ

dt′
m√
2
Im f1−(t

′)− Im f1+(t
′)

t′(t′ − tN )
+
t

π

∞∫

tπ

dt′
Im f1+(t

′)

t′(t′ − t)
,

f1−(t) = ∆1
−
∣∣1-sub(t) + t

π

∞∫

tπ

dt′
Im f1−(t

′)

t′(t′ − t)
,

f2+(t) = ∆2
+

∣∣1-sub(t) + 1

π

∞∫

tπ

dt′
m
√

2
3Im f2−(t

′)− Im f2+(t
′)

t′ − tN
+

1

π

∞∫

tπ

dt′
Im f2+(t

′)

t′ − t
,

f2−(t) = ∆2
−
∣∣1-sub(t) + 1

π

∞∫

tπ

dt′
Im f2−(t

′)

t′ − t
, (4.14)
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while two subtractions yield

f0+(t) = ∆0
+

∣∣2-sub(t)− t2

π

∞∫

tπ

dt′
Im f0+(t

′)

t′2(t′ − tN )
+
t2

π

∞∫

tπ

dt′
Im f0+(t

′)

t′2(t′ − t)
,

f1+(t) = ∆1
+

∣∣2-sub(t) + tN t

π

∞∫

tπ

dt′
m√
2
Im f1−(t

′)− Im f1+(t
′)

t′2(t′ − tN )
+
t2

π

∞∫

tπ

dt′
Im f1+(t

′)

t′2(t′ − t)
,

f1−(t) = ∆1
−
∣∣2-sub(t) + t2

π

∞∫

tπ

dt′
Im f1−(t

′)

t′2(t′ − t)
,

f2+(t) = ∆2
+

∣∣2-sub(t) + tN
π

∞∫

tπ

dt′
m
√

2
3Im f2−(t

′)− Im f2+(t
′)

t′(t′ − tN )
+
t

π

∞∫

tπ

dt′
Im f2+(t

′)

t′(t′ − t)
,

f2−(t) = ∆2
−
∣∣2-sub(t) + t

π

∞∫

tπ

dt′
Im f2−(t

′)

t′(t′ − t)
. (4.15)

It is important to note that S- and D-waves are coupled, as ∆0
+ contains contributions from J = 2

according to (3.65). While the integrands containing the Cauchy kernel in (4.14) and (4.15) for J = 0
and J = 1 clearly show the corresponding number of subtractions at t0 = 0, for J = 2 there is always
one subtraction less or no subtraction at all. Note that the integrands containing linear combinations
of the partial waves are proportional to tN/t

′ (if affected by the subtractions at all), which results
in a suppressed internal high-energy dependence inside the integral due to division by t′ without an
increased external high-energy dependence due to multiplication with tN rather than t as for a usual
subtraction at zero.

The un- (3.64), once- (4.14), and twice-subtracted (4.15) equations are of the original form of the
(subtracted) MO problem with integrals of the absorptive parts times the Cauchy kernel, if the re-
maining t-independent integrals (which may, however, come with t-dependent prefactors) are absorbed
into a redefinition of the inhomogeneities ∆J

±(t). This problem is well defined due to the threshold
behavior of the partial waves at t = tN . However, the price for taking advantage of the convergence
properties of the integrals this way is that reasonable approximations for the starting values for the
partial waves are needed as input, since the solutions can only be found iteratively.

Therefore, we prefer to utilize the threshold behavior of the partial waves and use the linear
combinations ΓJ(t) in order to rewrite the equations in analogy to (3.67), i.e. to modify the original
form of the (subtracted) MO problem in a well-defined manner. The general n-times subtracted (with
n ∈ {0, 1, 2}) versions of the MO equations (3.67) for all J then read

f0+(t) = ∆0
+

∣∣n-sub(t) + tn(t− tN )

π

∞∫

tπ

dt′
Im f0+(t

′)

t′n(t′ − tN )(t′ − t)
,

ΓJ(t) = ∆J
Γ

∣∣n-sub(t) + t(n−J)θ(n−J)(t− tN )

π

∞∫

tπ

dt′
ImΓJ(t′)

t′(n−J)θ(n−J)(t′ − tN )(t′ − t)
∀ J ≥ 1 ,

fJ−(t) = ∆J
−
∣∣n-sub(t) + t(n−J+1)θ(n−J)

π

∞∫

tπ

dt′
Im fJ−(t

′)

t′(n−J+1)θ(n−J)(t′ − t)
∀ J ≥ 1 , (4.16)
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where the Heaviside step function is to be understood in its right-continuous form, i.e. θ(0) = 1. Again,
the equations for f0+(t) and ΓJ(t) exhibit one additional subtraction at tN , such that the combined
number of subtractions for all J ≥ 0 can be given as (n−J+1)θ(n−J). For convenience, we explicitly
show the terms in ∆0

+(t) that couple the D- to the S-waves

∆0
+

∣∣0-sub(t) = − 5

16

t− tN
π

∞∫

tπ

dt′
{[
t′ + t− (tN + tπ) + 6a

] ImΓ2(t′)
t′ − tN

+
m√
6
Im f2−(t

′)

}
+ . . . , (4.17)

∆0
+

∣∣1-sub(t) = − 5

16

t− tN
π

∞∫

tπ

dt′

t′

{[
t′t+

tN tπ
2

]
ImΓ2(t′)
t′ − tN

+ tπ
m√
6
Im f2−(t

′)

}
+ . . . ,

∆0
+

∣∣2-sub(t) = − 5

16

t− tN
π

∞∫

tπ

dt′

t′2

{
1

2

[
(t′ + t)tN tπ − t′t(tN + tπ)

] ImΓ2(t′)
t′ − tN

+ ttπ
m√
6
Im f2−(t

′)

}
+ . . . ,

which converge for t′ → tN due to the threshold behavior of Γ2 and vanish for t → tN due to the
exceptional behavior of the (n-times subtracted) kernel K̃2

02 (cf. (B.52) and (B.68)); the respective
remainder denoted by dots above is then given by

. . . = Ñ0
+

∣∣n-sub(t) + 1

π

∞∫

W+

dW ′
∞∑

l=0

{
G̃0l

∣∣n-sub(t,W ′) Im f+l+(W
′) + G̃0l

∣∣n-sub(t,−W ′) Im f+(l+1)−(W
′)
}

+
1

π

∞∫

tπ

dt′
∞∑

J ′=4

1 + (−1)J
′

2

{
K̃1

0J ′

∣∣n-sub(t, t′) Im fJ
′

+ (t′) + K̃2
0J ′

∣∣n-sub(t, t′) Im fJ
′

− (t′)
}
. (4.18)

Note that this D- to S-wave coupling becomes independent of a by subtracting once or twice, while
the corresponding F - to P -wave coupling also depends on a in the once-subtracted case (cf. (B.67)).

5 Solving the t-channel Muskhelishvili–Omnès problem

In this section the solution of the MO problem for the lowest t-channel partial waves fJ±(t) with
J ∈ {0, 1, 2} will be discussed. First, the explicit analytical solutions will be stated. Then, the
numerical input needed will be collected. Finally, the numerical results will be discussed.

5.1 Muskhelishvili–Omnès problem with finite matching point

We assume to know the imaginary part of the t-channel partial waves fJ±(t) above the finite matching

point tm as well as the scattering phases δItJ (t) of the ππ partial waves tItJ (t) for 4M
2
π = tπ ≤ t ≤ tm,

which in the elastic region are also the phases of the fJ±(t) due to Watson’s final state theorem,
cf. (3.37). All inelastic contributions will be neglected. Under these assumptions, we have to solve
equations of the MO type [26,27]

f(t) = ∆(t) +
1

π

tm∫

tπ

dt′
T (t′)∗f(t′)
t′ − t

+
1

π

∞∫

tm

dt′
Im f(t′)
t′ − t

(5.1)

for f(t) in the range tπ ≤ t ≤ tm with finite tm [19], where the physical values of the integrals are
obtained in the limit t → t + iǫ and the discontinuity of f(t) across the right-hand cut is given by
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unitarity (cf. hermitian analyticity (3.17) and the elastic t-channel unitarity relation (3.36))

Disc f(t)

2i
= Im f(t) = T (t)∗f(t) θ

(
t− tπ

)
, (5.2)

where the inhomogeneity ∆(t) contains potential left-hand cut contributions to f(t) (i.e. it is real for
tπ ≤ t) and the elastic amplitude T (t) is given by

T (t) = sin δ(t)eiδ(t) . (5.3)

We briefly review the result of [19, 27] in the following sections.

5.1.1 General solution

To begin with, we consider the homogeneous problem for a function f0(t) with non-vanishing imaginary
part only for tπ ≤ t ≤ tm. The solution can then be written as

f0(t) = Ω(t)Σ0(t) , (5.4)

with the Omnès function15

Ω(t) = exp

{
t

π

tm∫

tπ

dt′

t′
δ(t′)
t′ − t

}
= |Ω(t)| exp

{
iδ(t)θ

(
t− tπ

)
θ
(
tm − t

)}
, Ω(0) = 1 ,

|Ω(t)| = exp

{
t

π
−
tm∫

tπ

dt′

t′
δ(t′)
t′ − t

}
= |Ω̄(t)| |tm − t|x(t) , x(t) =

δ(t)

π
,

|Ω̄(t)| =
∣∣∣∣
tm
tπ

(t− tπ)

∣∣∣∣
−x(t)

exp

{
t

π

tm∫

tπ

dt′

t′
δ(t′)− δ(t)

t′ − t

}
, (5.5)

where we have analytically separated the endpoint singularities of the principal value integral. By
assuming the reasonable asymptotic behavior f0(t) → 0 for t → ∞ (cf. (3.47)), the only analytic
structures of Σ0(t) allowed by f0(t) and Ω(t) are poles at the endpoints t = tπ and t = tm. Since Ω(t)
is regular at tπ due to δ(tπ) = 0, the regularity of f0(t) excludes poles at t = tπ and restricts the order
of the poles at t = tm to

n = ⌊x⌋ , x =
δ(tm)

π
(5.6)

(⌊x⌋ denotes the largest integer ≤ x). In this way, we find

Σ0(t) =
Pn−1(t)

(tm − t)n
, (5.7)

where Pn−1(t) is an arbitrary real polynomial of degree n− 1 that introduces n free parameters to the
Omnès problem. For n = 0 the homogeneous solution vanishes according to P−1(t) = 0 and no free
parameter enters the problem.

The general solution reads

f(t) = ∆(t) + Ω(t)

{
Pn−1(t)

(tm − t)n
+

1

π

tm∫

tπ

dt′
∆(t′) sin δ(t′)
|Ω(t′)|(t′ − t)

+
1

π

∞∫

tm

dt′
Im f(t′)

|Ω(t′)|(t′ − t)

}
, (5.8)

15Note that for a finite matching point it is not mandatory to work with a subtracted Omnès function. However,
subtracting once at t = 0 ensures the usual normalization Ω(0) = 1.
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which may also be written in terms of a principal value integral as

f(t) =

[
∆(t) cos δ(t)+|Ω(t)|

{
Pn−1(t)

(tm − t)n
+

1

π
−
tm∫

tπ

dt′
∆(t′) sin δ(t′)
|Ω(t′)|(t′ − t)

+
1

π

∞∫

tm

dt′
Im f(t′)

|Ω(t′)|(t′ − t)

}]
eiδ(t) , (5.9)

in accordance with [27] for tm → ∞. Note that due to Watson’s theorem (3.37) the prefactor in square
brackets can be identified with the modulus |f(t)|, and since the phase δ(t) is known, we only need to
solve the MO problem for this modulus for tπ ≤ t ≤ tm.

5.1.2 Subtractions

If x > 1, suitable subtractions need to be performed in (5.9) to ensure integrability for t′ → tm. Let
us begin with the case 1 < x < 2, i.e. n = 1. We may write

∞∫

tm

dt′
Im f(t′)

|Ω(t′)|(t′ − t)
=

1

tm − t

{
tm

∞∫

tm

dt′

t′
Im f(t′)
|Ω(t′)| + t

∞∫

tm

dt′

t′
tm − t′

|Ω(t′)|
Im f(t′)
t′ − t

}
, (5.10)

where the second integral is now convergent. The first integral is still divergent, of course, but it does
not depend on t any more and can thus be absorbed into a redefinition of the (constant) polynomial
P0 in (5.9) due to the common prefactor (tm − t)−1. For higher values of x this subtraction and
redefinition prescription needs to be iterated, whereby all n parameters contained in the polynomial
receive corresponding contributions. Applying this reasoning to both integrals of (5.9) for general x
and using the highest number of subtractions allowed by the degree of the polynomial, the result is
given by

|f(t)| = ∆(t) cos δ(t) +
|Ω(t)|

(tm − t)n

{
Pn−1(t) +

tn

π
−
tm∫

tπ

dt′

t′n
(tm − t′)n

|Ω(t′)|
∆(t′) sin δ(t′)

t′ − t

+
tn

π

∞∫

tm

dt′

t′n
(tm − t′)n

|Ω(t′)|
Im f(t′)
t′ − t

}
. (5.11)

In order to reduce the influence of the high-energy contributions on the Omnès integrals, subtrac-
tions may also be introduced already right from the beginning (5.1). With l such subtractions, the
analog of (5.11) becomes

|f(t)| = ∆(t) cos δ(t) +
tl|Ω(t)|
(tm − t)n

{
Pn−1(t) +

tn

π
−
tm∫

tπ

dt′

t′n+l

(tm − t′)n

|Ω(t′)|
∆(t′) sin δ(t′)

t′ − t

+
tn

π

∞∫

tm

dt′

t′n+l

(tm − t′)n

|Ω(t′)|
Im f(t′)
t′ − t

}
. (5.12)

This constitutes the final general result, which for l = 1 and n ∈ {0, 1} reduces to the results quoted
in [19].
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5.1.3 Numerical treatment

The asymptotic behavior of the Omnès function |Ω(t)| for t→ tm requires some care in the numerical
evaluation of the integrals in (5.12). Although by construction the singularities for t′ → tm are
integrable, the corresponding cusps generate large contributions to the integral and a fully numerical
treatment would require a very careful distribution of mesh points in order to catch the effect. In
the following, we will demonstrate how these endpoint singularities can be separated analytically (cf.
the appendix of [19]). For the sake of simplicity, we discuss here the case of n = l = 0, which
already displays all relevant features; the generalization is then straightforward. To this end, we split
the integrals close to the matching point tm and approximate |Ω(t)| by its asymptotic form in the
proximity of tm

|Ω(t ≈ tm)| ≈ |Ω̄(tm)| |tm − t|x . (5.13)

For τ → 0+, we may thus rewrite the integrals above the matching point as

∞∫

tm

dt′
Im f(t′)

|Ω(t′)|(t′ − t)
=

∞∫

tm+τ

dt′
Im f(t′)

|Ω(t′)|(t′ − t)
+

Im f(tm)

|Ω̄(tm)|

tm+τ∫

tm

dt′

|tm − t′|x(t′ − t)

=

∞∫

tm+τ

dt′
Im f(t′)

|Ω(t′)|(t′ − t)
+

Im f(tm)

|Ω̄(tm)|(tm − t)x
I+(t) , (5.14)

and similarly below the matching point either for tπ ≤ t < tm − τ

−
tm∫

tπ

dt′
∆(t′) sin δ(t′)
|Ω(t′)|(t′ − t)

=

tm−τ∫

tπ

dt′

t′ − t

(
∆(t′) sin δ(t′)

|Ω(t′)| − ∆(t) sin δ(t)

|Ω(t)|

)
+

∆(t) sin δ(t)

|Ω(t)| log
tm − τ − t

t− tπ

+
∆(tm) sin δ(tm)

|Ω̄(tm)|(tm − t)x
I−(t) , (5.15)

or for tm − τ ≤ t ≤ tm

−
tm∫

tπ

dt′
∆(t′) sin δ(t′)
|Ω(t′)|(t′ − t)

=

tm−τ∫

tπ

dt′

t′ − t

∆(t′) sin δ(t′)
|Ω(t′)| +

∆(tm) sin δ(tm)

|Ω̄(tm)|(tm − t)x
Ĩ−(t) . (5.16)

The substitution v(t′) = (t′ − tm)/(tm − t) leads to the integrals (with x ∈ (0, 1))

I±(t) =

τ̃(t)∫

0

dv

vx(1± v)
=
τ̃(t)1−x

1− x
∓

τ̃(t)∫

0

dv
v1−x

1± v
, τ̃(t) =

τ

tm − t
,

Ĩ−(t) = −
τ̃(t)∫

0

dv

vx(1− v)
= − log |τ̃ (t)− 1|+ τ̃(t)1−x

1− x
+

τ̃(t)∫

0

dv
v1−x − 1

1− v
. (5.17)

Separating the singularities as shown above, the remaining integrals can be solved by using standard
integration routines. For sufficiently small τ (i.e. if τ is of the same order of magnitude as the
discretization error of the integration routine), the above approximations are well justified and this
procedure allows for a stable numerical evaluation of the Omnès integrals.
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5.1.4 Continuity at the matching point

The continuity of the Omnès solution f(t) at the matching point tm is analytically ensured by the
asymptotic form of the corresponding integrals of (5.17) (with 0 < x < 1, cf. the appendix of [19])

I+(tm) =

∞∫

0

dv

vx(1 + v)
= π cosec πx , Ĩ−(tm) = −

∞∫

0

dv

vx(1− v)
= −π cot πx . (5.18)

Taking equation (5.9) in the limit t → tm from below, plugging in these asymptotic expressions for
the integrals, and using (5.6) indeed reduces the square bracket to |f(tm)|. This analytical equality
may also be used as a check of the numerical evaluation.

However, the continuity of the first and higher derivatives is not ensured in a similar manner. Since
the solution must not depend on the value of the matching point, an unphysical cusp or non-smooth
behavior of the modulus of the solution at the matching point only indicates that the input in terms
of the absorptive part is not precise enough; moreover, the physical condition of a smooth behavior at
the matching point ensures the uniqueness of the solution [32]. Physically consistent input given, this
smoothness constraint may actually be used in order to tune/estimate/fit the subtraction constants
(cf. [19]).

5.2 Explicit solution of the t-channel Muskhelishvili–Omnès problem

Here, we will give the explicit solutions for the n-times subtracted t-channel MO problem (4.16)
using the general results of Sect. 5.1. The crucial ingredient for the following discussion is Watson’s
theorem (3.37), which states that below the onset of inelasticities the phases ϕJ

±(t) of the t-channel

partial waves fJ±(t) are given by the corresponding ππ scattering phases δItJ (t) with It ∈ {0, 1}, i.e.
explicitly for J ∈ {0, 1, 2}

ϕ0
+(t) = δ00(t) = δ0(t) , ϕ1

±(t) = δ11(t) = δ1(t) , ϕ2
±(t) = δ02(t) = δ2(t) . (5.19)

These identities enter the solutions at two places: first, in this kinematical region we can use the same
Omnès function ΩJ for both fJ± and thus also for the linear combination ΓJ . Second, in this range of
t the linear relation (3.57) is also valid for the moduli such that after solving for

∣∣ΓJ
∣∣ we can recover

∣∣fJ+(t)
∣∣ = m

√
J

J + 1

∣∣fJ−(t)
∣∣−
∣∣ΓJ(t)

∣∣ . (5.20)

Using once-subtracted Omnès functions in the convention (cf. (5.5)),

ΩJ(t) = exp

{
t

π

tm∫

tπ

dt′

t′
δJ (t

′)
t′ − t

}
=
∣∣ΩJ(t)

∣∣ exp
{
iδJ (t)θ

(
t− tπ

)
θ
(
tm − t

)}
, ΩJ(0) = 1 ,

∣∣ΩJ(t)
∣∣ =

∣∣∣∣1−
t

tm

∣∣∣∣
xJ (t)

∣∣∣∣
t

tπ
− 1

∣∣∣∣
−xJ (t)

exp

{
t

π

tm∫

tπ

dt′

t′
δJ (t

′)− δJ(t)

t′ − t

}
, xJ(t) =

δJ(t)

π
, (5.21)
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the general n-times subtracted (n ∈ {0, 1, 2}) solutions of (4.16) for t ∈ [tπ, tm] and ⌊δJ (tm)/π⌋ = 0
read

f0+(t) = ∆0
+

∣∣n-sub(t) + Ω0(t)
tn(t− tN )

π

{ tm∫

tπ

dt′
∆0

+

∣∣n-sub(t′) sin δ0(t′)
t′n(t′ − tN )|Ω0(t′)|(t′ − t)

+

∞∫

tm

dt′
Im f0+(t

′)

t′n(t′ − tN )|Ω0(t′)|(t′ − t)

}
,

ΓJ(t) = ∆J
Γ

∣∣n-sub(t) + ΩJ(t)
t(n−J)θ(n−J)(t− tN )

π

{ tm∫

tπ

dt′
∆J

Γ

∣∣n-sub(t′) sin δJ(t′)
t′(n−J)θ(n−J)(t′ − tN )|ΩJ(t′)|(t′ − t)

+

∞∫

tm

dt′
ImΓJ(t′)

t′(n−J)θ(n−J)(t′ − tN )|ΩJ (t′)|(t′ − t)

}
∀ J ≥ 1 ,

fJ−(t) = ∆J
−
∣∣n-sub(t) + ΩJ(t)

t(n−J+1)θ(n−J)

π

{ tm∫

tπ

dt′
∆J

−
∣∣n-sub(t′) sin δJ (t′)

t′(n−J+1)θ(n−J)|ΩJ(t′)|(t′ − t)

+

∞∫

tm

dt′
Im fJ−(t

′)

t′(n−J+1)θ(n−J)|ΩJ(t′)|(t′ − t)

}
∀ J ≥ 1 . (5.22)

Now, we can use the spectral representations of the inverse of the Omnès functions in the un-, once-,
and twice-subtracted form

Ω−1
J (t) =

1

π

tm∫

tπ

dt′
ImΩ−1

J (t′)

t′ − t
= − 1

π

tm∫

tπ

dt′
sin δJ(t

′)
|ΩJ(t′)|(t′ − t)

= 1− t

π

tm∫

tπ

dt′
sin δJ(t

′)
t′|ΩJ(t′)|(t′ − t)

= 1− t Ω̇J(0) −
t2

π

tm∫

tπ

dt′
sin δJ(t

′)
t′2|ΩJ(t′)|(t′ − t)

, (5.23)

with the derivative of the Omnès function16

Ω̇J(0) =
d

dt
ΩJ(t)

∣∣∣∣
t=0

=
1

π

tm∫

tπ

dt′
δJ (t

′)
t′2

, (5.24)

in order to explicitly perform the integrals over terms that are either constant or come with appropriate
factors of t′ or p′2t , i.e. all terms involving the subthreshold parameters as well as the term proportional
to δJ1/(m

2−a) for the unsubtracted case. For this purpose we define ∆̃J
±(t) via removing all constant

or subthreshold-parameter contributions from the inhomogeneities ∆J
±(t) (cf. (3.65) and (B.61))

∆̃J
±
∣∣n-sub(t) = ∆J

±
∣∣n-sub(t)−∆N̂J

±
∣∣n-sub(t) = N̂J

±(t) + ∆̄J
±
∣∣n-sub(t) , (5.25)

16Note that for tm → ∞ (and neglecting inelasticities in the single-channel approximation) this quantity is closely
related to the pion vector radius for J = 1 : limtm→∞ Ω̇1 = 1

6
〈r2〉Vπ .
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and thereby we obtain

f0+(t) = ∆̃0
+

∣∣n-sub(t) + Ω0(t)
t− tN
π

{
χ0
+

∣∣n-sub(t)

+ tn

[ tm∫

tπ

dt′
∆̃0

+

∣∣n-sub(t′) sin δ0(t′)
t′n(t′ − tN )|Ω0(t′)|(t′ − t)

+

∞∫

tm

dt′
Im f0+(t

′)

t′n(t′ − tN )|Ω0(t′)|(t′ − t)

]}
,

ΓJ(t) = ∆̃J
Γ

∣∣n-sub(t) + ΩJ(t)
t− tN
π

{
χJ
Γ

∣∣n-sub(t)

+ t(n−J)θ(n−J)

[ tm∫

tπ

dt′
∆̃J

Γ

∣∣n-sub(t′) sin δJ(t′)
t′(n−J)θ(n−J)(t′ − tN )|ΩJ(t′)|(t′ − t)

+

∞∫

tm

dt′
ImΓJ(t′)

t′(n−J)θ(n−J)(t′ − tN )|ΩJ(t′)|(t′ − t)

]}
∀ J ≥ 1 ,

fJ−(t) = ∆̃J
−
∣∣n-sub(t) + ΩJ(t)

1

π

{
χJ
−
∣∣n-sub(t)

+ t(n−J+1)θ(n−J)

[ tm∫

tπ

dt′
∆̃J

−
∣∣n-sub(t′) sin δJ (t′)

t′(n−J+1)θ(n−J)|ΩJ(t′)|(t′ − t)

+

∞∫

tm

dt′
Im fJ−(t

′)

t′(n−J+1)θ(n−J)|ΩJ(t′)|(t′ − t)

]}
∀ J ≥ 1 , (5.26)

with

χ0
+

∣∣2-sub(t) = − 1

16

{[
g2

m
+ d+00 + tπ

b+00
12

](
1− t Ω̇0(0)

)
+

[
d+01 −

b+00
12

]
t

}
1-sub−→ − 1

16

[
g2

m
+ d+00

]
0-sub−→ 0 ,

χJ
Γ

∣∣2-sub(t) = 1

12

a−00
4m

δJ1
1-sub−→ 0

0-sub−→ 0 ,

χJ
−
∣∣2-sub(t) =

√
2

12

{[
− g2

2m2
+ b−00

](
1− t Ω̇1(0)

)
+ b−01t

}
δJ1 +

√
6

15

b+00
4m

δJ2

1-sub−→
√
2

12

[
− g2

2m2
+ b−00

]
δJ1

0-sub−→ 0 . (5.27)

Note that also in the unsubtracted case the explicit dependence on a cancels.17

17Actually, this has to be the case: e.g. the constant term proportional to (m2−a)−1 in the nucleon pole terms (2.48),
which was introduced to the dispersion relations via the hyperbolic kinematical relations and which can be thought of
as a contribution of the contour integral from the circle with infinite radius, leads to constant pole-term contributions
to the partial waves (cf. (B.6) and (B.62)). These (unphysical) contributions do not vanish asymptotically, generate
an unphysical behavior on a, and thus they must cancel in any (physical) solution. Hence, the dispersion integrals for
the unsubtracted case both for the Omnès solution and the spectral representation of the Omnès function are strictly
speaking not correct: there should be contributions from the contour at infinity. However, this problem can be solved
most easily by removing all “dangerous” parts of the inhomogeneities via (5.23), which ensures that all these potential
contributions from the contour at infinity cancel.
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Finally, due to Watson’s theorem (3.37) we can separate the unknown moduli from the known ππ
phases and solve the MO problem for the moduli directly

∣∣f0+(t)
∣∣ = ∆̃0

+

∣∣n-sub(t) cos δ0(t) + (t− tN )
|Ω0(t)|
π

{
χJ
0

∣∣n-sub(t)

+ tn

[
−
tm∫

tπ

dt′
∆̃0

+

∣∣n-sub(t′) sin δ0(t′)
t′n(t′ − tN )|Ω0(t′)|(t′ − t)

+

∞∫

tm

dt′
Im f0+(t

′)

t′n(t′ − tN )|Ω0(t′)|(t′ − t)

]}
,

∣∣ΓJ(t)
∣∣ = ∆̃J

Γ

∣∣n-sub(t) cos δJ (t) + (t− tN )
|ΩJ(t)|
π

{
χJ
Γ

∣∣n-sub(t)

+ t(n−J)θ(n−J)

[
−
tm∫

tπ

dt′
∆̃J

Γ

∣∣n-sub(t′) sin δJ (t′)
t′(n−J)θ(n−J)(t′ − tN )|ΩJ (t′)|(t′ − t)

+

∞∫

tm

dt′
ImΓJ(t′)

t′(n−J)θ(n−J)(t′ − tN )|ΩJ(t′)|(t′ − t)

]}
∀ J ≥ 1 ,

∣∣fJ−(t)
∣∣ = ∆̃J

−
∣∣n-sub(t) cos δJ (t) +

|ΩJ(t)|
π

{
χJ
−
∣∣n-sub(t)

+ t(n−J+1)θ(n−J)

[
−
tm∫

tπ

dt′
∆̃J

−
∣∣n-sub(t′) sin δJ(t′)

t′(n−J+1)θ(n−J)|ΩJ(t′)|(t′ − t)

+

∞∫

tm

dt′
Im fJ−(t

′)

t′(n−J+1)θ(n−J)|ΩJ(t′)|(t′ − t)

]}
∀ J ≥ 1 . (5.28)

On the one hand, the subtraction-independent pole terms N̂J
± are real for t ≥ tπ − (M2

π/m)2 and
grow rapidly with J for t in the vicinity of tπ, as discussed in Appendix B.1. On the other hand,
in the elastic region the phases δJ are given by the corresponding ππ scattering phases such that
δJ(tπ) = 0 and thus Im fJ±(tπ) = 0. Since furthermore phenomenologically the ππ phases grow slower
for higher J , we thus expect the partial waves fJ± (and thereby also their moduli |fJ±|) to be increasingly
dominated by the pole terms for increasing J and t → tπ. However, we do not solve for fJ+ directly

but for the linear combination ΓJ , for which, in turn, the pole-term contributions N̂J
± cancel at tπ,

cf. Appendix B.5. The pole-term domination of |fJ+| enters when calculating these parallel helicity
moduli from the solutions for the |ΓJ | and the (pole-term dominated) antiparallel helicity moduli |fJ−|
via (5.20), where in addition the relative importance of the latter increases with J due to the factor√
J/(J + 1). Both the pole-term domination and the dependence of |fJ+| on |fJ−| will be explicitly

demonstrated in Sect. 5.4.

5.3 Input

In this section we will discuss all input that is needed to solve the (elastic) t-channel MO problem (5.28)
as given in Sect. 5.2.
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Figure 3: Moduli |ΩJ | of the lowest once-subtracted finite-matching-point Omnès functions for
√
tm =

0.98GeV.

5.3.1 Pion–pion phases and Omnès functions

We use ππ scattering phase shifts δItJ (t) of [15,16] for J ∈ {0, 1, 2} with It ∈ {0, 1} (It even/odd for J
even/odd) which are constructed for

√
t ∈ [2Mπ, 1.15GeV].18 Schenk-like parameterizations [12,62]

tan δItJ (t) = σπt q
2J
t

{
AIt

J +BIt
J q

2
t + CIt

J q
4
t + . . .

}tπ − rItJ
t− rItJ

, (5.29)

where the parameter rItJ denotes the point where the corresponding phase shift passes through π/2

and the Schenk parameters AIt
J etc. may be related to the coefficients of the threshold expansion,

ensure both the vanishing at threshold δItJ (tπ) = 0 as well as the correct square-root-power behavior
above threshold. Thus, δ00 is linear, δ11 cubic, and δ02 quintic in σπt .

In Fig. 3 we show the moduli |ΩJ | of the resulting once-subtracted finite-matching-point Omnès
functions according to (5.21) for J ∈ {0, 1, 2}, where the choice

√
tm = 0.98GeV ensures that xJ(t) ∈

(0, 1) and hence nJ = ⌊xJ(tm)⌋ = 0 for t ∈ [tπ, tm]. Therefore, all functions are normalized to unity
at t = 0, finite for all t, and vanish at t = tm due to the finite-matching-point prefactor |tm − t|xJ (t).
Furthermore, for J = 0 the Omnès function exhibits a cusp (i.e. a discontinuity of the derivative) at
the physical ππ threshold tπ and decreases approximately linearly over a wide range in t, for J = 1 it
is fully dominated by the ρ(770) peak, and for J = 2 it is almost flat (equaling one again roughly at
the end of the KH80 energy range at 0.88GeV and dropping rapidly above).

Using instead the parameterization of the ππ phases as given in [14] for the numerical evaluations
leads to deviations in these Omnès functions, and thereby the solutions of the MO problem (5.28),

18For ππ scattering the validity of the Roy equations can be shown rigorously for tπ ≤ t ≤ 60M2
π based on axiomatic

field theory [11]. Assuming Mandelstam analyticity, this range can be extended to tπ ≤ t ≤ 68M2
π [61], which corresponds

to 2Mπ ≤
√
t ≤ 1.15GeV, by reasoning along the lines of Appendix C for ππ scattering.
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that, however, are much smaller than the effects of the alterations described in Sect. 5.4.19

5.3.2 General remarks on existing pion–nucleon partial-wave analyses

Before summarizing the input from πN partial-wave analyses that will be used in the following, some
general remarks are in order: first of all, we will use the Karlsruhe–Helsinki dispersive partial-wave
analysis KH80 [28,29] both as input for s-channel partial waves as well as subthreshold parameters and
as reference for our MO t-channel partial-wave solutions, since KH80 is still the only consistent analysis
for all the partial waves and parameters entailed in our RS framework. KH80 is based on πN →
πN data only (and isospin invariance) and uses Pietarinen’s expansion method [64] in combination
with conformal mapping techniques, aided in particular by fixed-t analyticity. Its solutions for both
channels are given as tables in [29].20 Moreover, an iteration uncertainty of about 3% for the iterative
KH80 procedure is stated, which, however, cannot replace a thorough analysis of the systematic
uncertainties. The subsequent Karlsruhe analysis KA84 [65] improves on KH80 especially for higher
partial waves by using a modified PWDR framework and thereby smoothing KH80, but no consistent
subthreshold parameters are derived in this framework.21 The same holds true for the continuously
updated VPI/GWU(SAID) s-channel analyses, see e.g. [43,67–69], for which at most the πN coupling
constant and some of the necessary subthreshold parameters are determined. For the t-channel partial
waves in the unphysical region t ∈ [tπ, tN ], there also exists an unpublished solution [56] extending
the KH80 energy range

√
t ∈ [2Mπ,

√
40Mπ = 0.88GeV] to roughly 1GeV. While this solution is

compatible with KH80 within the aforementioned range, it seems to suffer from internal inconsistencies
for higher energies.22 For the t-channel partial waves in the physical region t ≥ tN , however, there
exists a partial-wave analysis [70], which at least in principle could be used as input. Finally, a partial
update of the KH80 analysis including new data and using more computational power was reported
in [71], but so far only results for forward πN scattering have been published [72].

5.3.3 s-channel partial waves

We use the KH80 solution for the s-channel partial waves from [29] forW+ ≤W ≤Wa = 2.5GeV. On
the one hand, this is roughly the same energy range as for the continuously updated GWU “current
solution” [69] such that we are able to compare between KH80 and GWU solutions as input. However,
the effect of taking the GWU solution (or the “smoothed” KH80 solution [69]) instead as input for
the t-channel Omnès problem (i.e. the corresponding inhomogeneities ∆̃J

±) turns out to be much
smaller than the effects discussed in Sect. 5.4. On the other hand, at Wa = 2.5GeV a reasonable
transition from the truncated sum of partial waves below Wa to the Regge model for the full invariant
amplitudes above Wa can be achieved as we will demonstrate now. Summing up all partial waves with
l ≤ 5 would encompass all 4-star resonances of [34], but of both l = 5 4-star resonances, N(2220) as
H1,9 and ∆(2420) as H3,11, especially the latter is mostly out of this energy range due to its broad
width of roughly 700MeV. Hence we expect the best agreement with the Regge model [73], which is
based on differential cross section and polarization data for πN backward scattering with W ≥ 3GeV

19As stated in [29], the Karlsruhe–Helsinki dispersive partial-wave analyses KH78 and KH80 (see Sect. 5.3.2 for more
details) use as input the ππ phase shifts of [63], which are based on Roy-equation fits. In principle, the differences
between these phase shifts and the recent results [14–16] are sources of discrepancies between the KH80 results and the
solutions of the MO problem. However, this point is of minor importance for the results discussed in Sect. 5.4.

20In [29] the results for the t-channel partial waves are quoted as KH78 solution, but according to [23] these tables are
actually calculated from the KH80 s-channel solutions. Thus we will speak of the t-channel partial waves in [29] as KH80
solution as well. In general, KH80 is an update of KH78 including more recent data and improved fixed-t analyticity
constraints.

21For a comparison of KH80 with KA84 and also an improvement of the formalism outlined in [46], see [66].
22There are e.g. rather obvious outliers (corresponding to unphysical jumps) in the phases.

42



-150

-100

-50

0

50

100

150

1.5 1.7 1.9 2.1 2.3 2.5

Im
A

+
(W
,z

s
=

−
1
)
/
G
eV

−
1

W / GeV

l ≤ 3
l ≤ 4
l ≤ 5
Regge

-200

-150

-100

-50

0

50

100

1.5 1.7 1.9 2.1 2.3 2.5

Im
A

−

(W
,z

s
=

−
1
)
/
G
eV

−
1

W / GeV

l ≤ 3
l ≤ 4
l ≤ 5
Regge

-100

-50

0

50

100

150

200

250

1.5 1.7 1.9 2.1 2.3 2.5

Im
B

+
(W
,z

s
=

−
1
)
/
G
eV

−
2

W / GeV

l ≤ 3
l ≤ 4
l ≤ 5
Regge

-100

-50

0

50

100

150

200

250

300

350

1.5 1.7 1.9 2.1 2.3 2.5

Im
B

−

(W
,z

s
=

−
1
)
/
G
eV

−
2

W / GeV

l ≤ 3
l ≤ 4
l ≤ 5
Regge

Figure 4: Matching of the s-channel absorptive parts between KH80 partial-wave contributions for
l ≤ 3, l ≤ 4, and l ≤ 5 and the πN backward scattering Regge model [73].

as discussed in Appendix D.1, for l ≤ 4 and a scattering angle of zs = −1 corresponding to backward
scattering. Since deviations between summing up contributions for l ≤ 3, l ≤ 4, and l ≤ 5 start to
show up around 1.5GeV and we are interested in the matching to the Regge model at the end of the
GWU range of validity around 2.5GeV, only this region is shown in Fig. 4 (in the spirit of [19]). Note
that only l ≤ 4 yields the correct sign compared to the Regge contribution in all four cases. Moreover,
it turns out that for l ≤ 5 the agreement is even worse than for l ≤ 3. Hence, in the following all
higher partial waves with l ≥ 5 will be neglected below Wa.

5.3.4 t-channel partial waves

The assumption of elastic unitarity breaks down in the S-wave as soon as the K̄K channel opens,
which manifests itself in the appearance of the f0(980) resonance. In principle, there are several ways
how this phenomenon may be accommodated in a single-channel description.

First, inelastic contributions could be included directly in the solution of the MO equations along
the lines discussed in [74, 75] provided that the inelasticities are well known. However, in the case of
f0+ this would in particular require knowledge of the K̄K → N̄N S-wave, but it is unclear how reliable
input for this partial wave could be obtained independently from the present approach.

Second, one could retain a rather low matching point tm, but try to model the energy region above
tm by means of a resonance description in order to establish a more meaningful matching condition.
This strategy proved quite successful in γγ → ππ [31], where the input above the matching point is
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KH80 St(KA84) St(SP98) Oa(KH80) Oa(SP98) Fe(KA84)

d+00
[
M−1

π

]
−1.46 ± 0.10 −1.39± 0.02 −1.32 ± 0.02 −1.46 ± 0.04 −1.29± 0.02 −1.58

d+01
[
M−3

π

]
1.14 ± 0.02 1.14± 0.01 1.15 ± 0.02 1.15 ± 0.11 1.23± 0.04 1.36

a−00
[
M−2

π

]
−8.83 ± 0.10 −8.82± 0.04 −8.97 ± 0.01 −9.26 ± 0.17 −8.92± 0.07 −8.47

b+00
[
M−3

π

]
−3.54 ± 0.06 −3.49± 0.03 −3.48 ± 0.02 −3.56 ± 0.10 −3.42± 0.04 −7.90

b−00
[
M−2

π

]
10.36 ± 0.10 10.35 ± 0.02 10.45 ± 0.01 10.84 ± 0.18 10.37 ± 0.08 10.34

b−01
[
M−4

π

]
0.24 ± 0.01 0.22± 0.01 0.24 ± 0.01 0.26 ± 0.22 0.26± 0.10 0.14

Table 1: Subthreshold parameter values as given by KH80/Höhler [29], Stahov [24], Oades [83, 84],
and Fettes (heavy-baryon ChPT) [85]. See main text for details.

dominated by the f2(1270). However, in the case of the f0(980) this strategy is subject to several diffi-
culties: its pole position is very close to the two-kaon threshold, such that the subtle interplay between
the ππ and K̄K channels can certainly not be approximated by a simple Breit–Wigner description. To
circumvent this problem, one would be compelled to further decrease the matching point and include
the f0(980) dynamics by hand using a Flatté-like parameterization [76], which is a modified relativistic
version of the Breit–Wigner differential mass distribution. However, while the f0ππ coupling constant
has been thoroughly investigated [77] based on the recent dispersive analysis [14] (which yields phases
that are basically consistent with the phases of [15, 16]), the f0NN coupling constant is only very
poorly known, with different meson-exchange models disagreeing significantly on the strength of the
coupling and the continuation to the physical pole [78–81]. We conclude that including the f0(980) in
our approach reliably as well as extending the energy range of our representation for f0+ beyond the
two-kaon threshold will require a full solution of the underlying two-channel Omnès problem [82]. In
this work we will content ourselves with the single-channel approximation.

Since therefore we can solve the single-channel MO problem in the elastic region only and further-
more iteration with the s-channel RS solutions (for which, in turn, accurate MO solutions are needed
as input) as well as a consistent determination of the πN coupling and the subthreshold parameters
is necessary to finally arrive at precise quantitative results for the partial waves of both channels, here
we will only give qualitative results for the t-channel partial waves by comparing with KH80.

Hence, in the following all t-channel absorptive parts above tm are set to zero. Consequently, all t-
channel Regge contributions are omitted (since tm < ta; cf. the discussion of the t-channel asymptotics
in Appendix D.2). Note that otherwise one would have to avoid double counting of the asymptotic
regions of the t-channel partial waves in the MO problem. Finally, also all higher partial waves with
J ≥ 3 are neglected.

5.3.5 Subthreshold parameters

To precisely determine the subthreshold parameters is not an easy task, since there simply is no ex-
perimental data available to analyze the t-dependence of the amplitudes close to t = 0 and thus means
of analytic continuation or extrapolation are needed. Accordingly, in the literature there are only few
determinations of all parameters that enter the subtracted RS system. The KH80 results (cf. [29],
wherein the error estimates are quoted to be “based on deviations from the internal consistency” and
the total uncertainty to be “somewhat larger”) and all more recent dispersion theoretical analyses that
we are aware of are collected in Table 1 (cf. [20]). Note that there are several determinations of only
some of these parameters, which are therefore not listed in Table 1. In [24] the subthreshold parame-
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ters are determined by means of interior dispersion relations together with fixed-t dispersion relations,
and by using as input the s-channel partial waves of both KA84 and VPI/SP98 [67, 86] as well as
the t-channel partial waves of KH80 (and those of [56] in the consistent energy range).23 In contrast,
finite-contour dispersion relations are used in [83] to derive subthreshold parameter values—again for
both KH80 and VPI/SP98 input (amongst others).24

The subthreshold parameters are the standard expansion parameters for the Lorentz-invariant
amplitudes, but neither these amplitudes nor the kinematical variables ν and t are natural for heavy-
baryon ChPT, and hence values obtained in analyses using this framework are not very satisfactory,
cf. [84]. However, for comparison we also state the corresponding values for a third-order calcula-
tion [85, 88] as given in [85] (Fit 1 therein corresponding to KA84); note that according to [85, 89]
some of the parameter values even deteriorate when calculated up to fourth order.

As can be seen already from the deviations between the different determinations of subthreshold
parameters in Table 1, the errors on the central values are in general unrealistically small (i.e. only
statistical fit errors for specific input in a given framework, thus neglecting systematic errors). Hence
we can conclude that there is no precise and consistent determination of the subthreshold parameters
including realistic errors. Since we want to compare our MO results with the KH80 solutions, for
consistency we use the KH80 subthreshold parameters as given in Table 1 as well as the outdated
KH80 πN pseudoscalar coupling value of 14.28 instead of the new value of 13.7 as given in (2.49).25

5.4 Results

The numerical results that will be presented in this section are to be understood as a qualitative “KH80
consistency check” in order to show that the t-channel RS–MO machinery works, and as a first step
towards a numerical analysis of the full RS system. In particular, by variation of either the coupling
or the subthreshold parameters we can alter the results significantly, since these variations produce
the most sizable effects on the MO solutions compared to the other variation that will be discussed
in the following. However, it is by no means clear a priori what the parameter values or their errors
are, and only a self-consistent determination of all parameters and partial waves in a second step will
allow for reliable quantitative results. Therefore, the necessary first task in this program is to check
our method and the internal consistency of the KH80 results by using KH80 input as described in
Sect. 5.3 and comparing our t-channel MO results with those of KH80. Moreover, we will investigate
different systematic effects on the (subtracted) MO solutions |fJ±|, which should prove valuable for the
solution of the full system: after discussing exemplarily the importance of the different contributions
to the MO inhomogeneities ∆̃J

±(t), we will also discuss both the connection to the “fixed-t limit”26

a → −∞ and the effect of changing the matching point tm. Except for the a → −∞ results, we will
always use the optimal hyperbola parameter value of a = −2.71M2

π as obtained in Appendix C.4.

23These are most probably the “new subthreshold parameters” mentioned in [87], where no explicit reference is given.
24Note that some of the results of [83] are corrected in [84], where also a modified version of the finite-contour dispersion

relations together with conformal mapping techniques is applied (it is mentioned therein that the subthreshold parameters
do not change substantially). Since the applied fitting procedure does not respect the exact analytic equality of the
parameters d+0n and a+

0n, however, the (corrected) values agree only within the given errors, but not exactly.
25Note that the πN coupling and the subthreshold parameters are related, as the difference d−00 − g2/(2m) is given by

an integral over a total cross section, cf. [20].
26Accordingly, the s-channel integral of the HDRs reduces to the fixed-t result, cf. Sect. 2.3. However, even in this

limit the HDRs contain additional information as compared to fixed-t dispersion relations, since those do not provide
equations for the t-channel partial waves in the first place.
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Figure 5: Contributions to the unsubtracted S-wave MO inhomogeneity ∆̃0
+

∣∣0-sub. See text for details.

5.4.1 Contributions to Muskhelishvili–Omnès inhomogeneities

In Figs. 5, 6, and 7 we show the different contributions to the MO inhomogeneities ∆̃J
±(t) exemplarily

for ∆̃0
+ for the un-, once-, and twice-subtracted case, respectively, from the ππ threshold tπ up to

1.15GeV, also indicating the upper limit of the KH80 solution as well as the K̄K threshold tK as
the uppermost limit of approximate elasticity for J = 0. We choose the S-wave for the following
reasons: for J = 0 the nucleon pole term is zero at tπ and does not dominate all other contributions
as it does for the higher partial waves; in addition, for the S-wave we can also show the coupling of
the D-wave as the leading example for the coupling of higher partial waves. The pole term N̂0

+ is
independent of both the number of subtractions and a and thus serves as reference in all three plots
(double-dashed). The s-channel contributions are shown separately for the sum of all partial waves
with l ≤ 4 in the range W ∈ [W+,Wa] (dashed) and the Regge contributions of the full invariant
amplitudes for W > Wa (dot-dashed). Even in the unsubtracted case both the s-channel Regge as
well as the t-channel D-wave contributions (dotted) are very small and almost negligible in comparison
to the other parts. From this it is also clear that the coupling of higher t-channel partial waves (e.g.
F -wave contributions to P -waves) can be completely omitted. The solid line denotes the sum of all
these contributions and we have checked for J ∈ {0, 1, 2} and n ∈ {0, 1, 2} that the expected threshold
behavior according to (3.54) and (3.58) (as for the corresponding partial waves) is indeed fulfilled.
While all results are given for the optimal value of a unless stated otherwise, for comparison we also
show the non-Regge s-channel contributions in the “fixed-t limit” a→ −∞. Since this is a very drastic
alteration (the RS system is not strictly valid in this case as will be explained below), the difference
of this contributions for the two a values gives a very ample bound on the dependence on a. While
the Regge contributions vanish for a → −∞ as discussed in Appendix D.1, the D-wave coupling is
not even well defined for a→ −∞ in this framework as can be seen from the explicit a-dependence in
the unsubtracted case leading to an infinite contribution, cf. (4.17). By comparing the three plots it
is clearly seen that in the once-subtracted case all contributions except the pole term are suppressed,
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Figure 6: Contributions to the once-subtracted S-wave MO inhomogeneity ∆̃0
+

∣∣1-sub.
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Figure 7: Contributions to the twice-subtracted S-wave MO inhomogeneity ∆̃0
+

∣∣2-sub.

while in the twice-subtracted case an additional t-dependence is introduced such that they are strongly
suppressed at tπ, but at least the s-channel partial-wave contributions are comparable to the pole term
around 0.75GeV. For small t, the differences between the two a values are also suppressed by each
subtraction as expected.
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Figure 8: MO solutions for the S-wave.

5.4.2 Muskhelishvili–Omnès solutions: comparison with KH80

We will compare our un-, once-, and twice subtracted MO solutions for |fJ±(t)| with J ∈ {0, 1, 2} for
t ∈ [tπ, tm] with the KH80 results given as tables in [29]. Note that for J ≥ 2 the un- and once-
subtracted solutions coincide. The a-dependence (which is fully contained in ∆̃J

±) can be used as a
crude measure for the systematic uncertainties due to neglecting t-channel input above tm (i.e. “non-
analytic” input), since the physical result must be independent of a. Thus, for the five lowest t-channel
partial waves we show our “KH80 consistency MO solution” for the un-, once-, and twice-subtracted
case, each for both the optimal value of a and a → −∞ in Figs. 8, 9, and 10. Here, we have chosen
to use the same value of

√
tm = 0.98GeV for all considered partial waves, which in principle is not

necessary (the effect of varying tm will be considered explicitly below). As discussed in Sects. 5.3.1
and 5.3.4, this choice is mainly motivated by the S-wave phase, which is just below π at this energy
(reaching π around the K̄K threshold

√
tK = 2MK = 0.987GeV) such that no additional subtractions

are necessary in the MO scheme. In general, neglecting any input above the matching point enforces
|fJ±(tm)| = 0 on the MO solutions. Nevertheless, even for the S-wave we expect reasonable agreement
with KH80 for this choice of tm, since both KH80 and [56] suggest that the modulus |f0+| has a
minimum or even an approximate zero between 0.9GeV and

√
tK .

In general, the solutions are fixed on both ends of the solution interval [tπ, tm]: on the left due
to the pole term and on the right due to the input above tm. In our case the solutions are forced to
go to zero at the matching point since the input above tm is set to zero. With increasing J the pole
term becomes larger and thus more dominating. Therefore, the differences between the n-subtracted
solutions and also the different a values decrease close to tπ. As they furthermore agree very well with
the KH80 solution in the respective pole-term-dominated regions, we only show the remaining regions.
Since the D-wave coupling for the unsubtracted case depends on a, this contribution is omitted for
the a→ −∞ limit (and thus the solutions for the two a values do not coincide at tπ). Obviously, the
occurrence of a negative modulus (i.e. the unsubtracted |f0+| for optimal a and the once-subtracted |f1+|
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Figure 9: MO solutions for the P -waves.

for a→ −∞) only indicates that too much input information is missing in this particular case in order
to yield a reasonable solution—a problem that can be cured by subtractions. The general pattern is
as expected: the effect of varying a is suppressed by both the subtraction procedure and higher J .
Furthermore, the agreement with the KH80 solution is strongly aided by subtracting. This is clear
since each subtraction power on the one hand suppresses the lacking input above tm and on the other
hand introduces additional consistent information via the subthreshold parameters as subtraction
constants. Hence, the twice-subtracted solution for optimal a is our central “consistency result”. The
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Figure 10: MO solutions for the D-waves. For J ≥ 2 one subtraction has no effect.

S-wave shows a nice convergence behavior in n, but around 0.8GeV it starts to deviate from KH80,
which is not surprising as the f0(980) is expected to have an important impact (cf. Sect. 5.3.4). As
far as the P -waves are concerned, the numerical results confirm the analytic expectation that |f1+| is
much less well determined or constrained than |f1−|: basically, the MO equations for |f1+| effectively
contain one low-energy subtraction less. Moreover, in the necessary intermediate step of solving the
MO problem for |Γ1| the pole-term contributions N̂J

± cancel at tπ (as discussed in Appendix B.5) as
for the S-wave, and thus the solution for |f1+| is less pole-term dominated and hence more sensitive to
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the values of the subthreshold parameters. Furthermore, the uncertainties of |f1−| propagate into |f1+|
when calculating the latter from |Γ1| via (5.20). All this leads to a rather slow convergence behavior
in n for fixed a as well as the loss of the expected convergence pattern in n of the differences between
the two a values (note especially the crossing of the unsubtracted solutions for different a values and
the negative once-subtracted modulus). However, our central twice-subtracted result for |f1+| agrees
rather well with KH80 especially in the ρ(770) peak, even though our result for |f1−| (which enters |f1+|)
seems to be systematically smaller than KH80. Since this underestimation might be due to forcing
the solution to go to zero at tm, we will investigate the effect of using a higher value for tm below.
Nevertheless, the a → −∞ variant of the twice-subtracted solution for |f1−| agrees well with KH80
in the ρ peak (though the agreement with KH80 becomes worse for |f1−| in this limit). The D-wave
results are systematically smaller than KH80. The change from one (or equivalently zero) to two
subtractions towards KH80 is roughly one third of this discrepancy and furthermore approximately of
the same absolute size for both partial waves, which is probably due to calculating |f2+| by using the
result for |f2−| together with the fact that χJ

Γ = 0 for all J 6= 1. For both |f2+| and |f2−| the accordance
with KH80 (which is based on fixed-t dispersion relations) in the “fixed-t limit” a → −∞ is striking,
the effect of varying a being much larger than the effect of subtractions.

5.4.3 Muskhelishvili–Omnès solutions: variation of the matching point

Up to now we have used the S-wave-motivated value
√
tm = 0.98GeV for all considered partial waves.

The effect of changing
√
tm to e.g. 1.1GeV is shown in Figs. 11 and 12 for the un-, once-, and twice-

subtracted solutions for J ∈ {1, 2}. Again, for J ≥ 2 the un- and once-subtracted solutions coincide.
For J = 1 it is generally assumed that 4π contributions can safely be neglected up to the πω threshold
around 0.92GeV; however, the ππ scattering P -wave inelasticity is small even above that energy and
hence the impact of neglecting it (for both values of tm) should be smaller than the effect of changing
tm. For J = 2 we do not expect sizable deviations from elasticity, since the ππ D-wave is essentially
elastic in this energy range. The P -wave solutions exhibit the expected behavior: the differences
between the two matching-point values become smaller with each subtraction, but the convergence
behavior in n is again less good for |f1+|, where a higher value of tm does not lead to a better agreement
with KH80, while for |f1−| already one subtraction in combination with the higher matching point yields
a description of the KH80 solution that is even better than the twice-subtracted version for a→ −∞
discussed before. Therefore we conclude that on the one hand the KH80 solution for |f1−| can be
reproduced well with a higher matching point already in the once-subtracted case, but on the other
hand the KH80 solution for |f1+| calls for a second subtraction and is hard to be accommodated in our
MO scheme for energies above roughly 0.8GeV. The D-wave solutions, however, are hardly affected
at all in the KH80 energy range by changing tm. As discussed in Sect. 5.2, they are expected to be
dominated by the pole terms N̂2

±, which for comparison are also shown in Fig. 12. While for |f2−| the
KH80 solution indeed agrees rather well with the pole term itself throughout the whole KH80 energy
range, for |f2+| there are sizable (with respect to the scale) deviations between KH80 and the pole
term in this region, which again fits the picture that the partial wave with parallel helicity is both
analytically and numerically less well constrained. Together with Fig. 10 we can conclude that in the
limit a→ −∞ for |f2−| the net effect of adding the dispersive integrals to the pole term is very small,
while for |f2+| the corresponding dispersive contributions (which thus are not mainly induced by |f2−|
in this limit) are crucial for the agreement with KH80. For optimal a (and independent from the
choice of tm), though, these contributions deteriorate the agreement with KH80 (with respect to the
pole term) for |f2−|, whereas improving the agreement for |f2+|; in this case the corrections to |f2+| are
effectively due to |f2−|.
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Figure 11: MO solutions for the P -waves with
√
tm = 1.1GeV.

5.4.4 Application to nucleon form factors

The t-channel partial waves considered in the previous sections are not only an integral part of any
closed system of dispersion relations for πN scattering fully consistent with crossing symmetry, but
also an essential ingredient to dispersive analyses of nucleon form factors. The contributions to the
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Figure 12: MO solutions for the D-waves with
√
tm = 1.1GeV. For J ≥ 2 one subtraction has no

effect.

isovector spectral functions by two-pion intermediate states27 in the case of the electromagnetic Sachs
form factors read [55] (cf. [29, 90] for precise definitions and [91] for a recent application)

ImG v
E (t) =

q3t
m
√
t

(
F V
π (t)

)∗
f1+(t) θ

(
t− tπ

)
, ImG v

M (t) =
q3t√
2t

(
F V
π (t)

)∗
f1−(t) θ

(
t− tπ

)
, (5.30)

27G-parity dictates that intermediate states of an even (odd) number of pions only contribute to the isovector (isoscalar)
spectral functions; cf. Sect. 2.2.
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Figure 13: Two-pion-continuum contribution to ImG v
E (t) and ImG v

M (t).

while the imaginary part of the scalar form factor is determined by [92]

Imσ(t) = − 3qt

4p2t
√
t

(
FS
π (t)

)∗
f0+(t) θ

(
t− tπ

)
, (5.31)

with the scalar and vector pion form factor FS
π (t) and F

V
π (t), respectively. In the case of the scalar form

factors the approximation by ππ intermediate states breaks down as soon as the two-kaon threshold
opens, and effects from K̄K intermediate states are known to be important for a dispersive description
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of FS
π (t) [53, 93]. In contrast, the two-pion contribution dominates in the vector channel, where

inelasticities set in more smoothly. It is thus instructive to investigate the impact of our results for
|f1±(t)| on the spectral functions of the Sachs form factors. To illustrate the corresponding effects we
approximate the vector pion form factor by a simple twice-subtracted Omnès representation28 (cf. [95]
and references therein)

F V
π (t) = exp

{
〈r2〉Vπ
6

t+
t2

π

∞∫

tπ

dt′

t′2
δ1(t

′)
t′ − t

}
(5.32)

using 〈r2〉Vπ = 0.435 fm2. The results for the once- and twice-subtracted versions of |f1±| together with
the comparison to KH80 are depicted in Fig. 13. As expected from the discussion in Sects. 5.4.2
and 5.4.3, the relative uncertainty in ImG v

E is much larger than in ImG v
M , which is a result of the

effectively lower number of subtractions in the calculation of |f1+| and its enhanced subthreshold-
parameter dependence. However, since ImG v

M is much larger than ImG v
E , the absolute deviations

between the individual curves are actually of comparable size in both cases. We conclude that a
new determination of the subthreshold parameters from a full solution of our RS system should lead
to improved central values and associated uncertainties for the two-pion contribution to the spectral
functions of both form factors.

6 Conclusion

In this article we have derived a closed system of Roy–Steiner equations for πN scattering and ana-
lytically calculated the kernel functions for the lowest s- and t-channel partial waves. Furthermore,
we have constructed the corresponding unitarity relations in detail, including inelastic contributions
from K̄K intermediate states in the t-channel reaction. To pin down the optimal value of the free
hyperbola parameter a, we have analyzed the domain of validity of the full system (assuming Man-
delstam analyticity) and determined a for both the s- and t-channel equations such that the range
of convergence is maximized. We have introduced subtractions at the subthreshold point in order to
suppress the dependence on the high-energy region and derived the corresponding once- and twice-
subtracted versions of our Roy–Steiner system as well as sum rules for the subtraction constants and
the necessary corrections to the kernel functions.

Casting the t-channel equations into the form of a Muskhelishvili–Omnès problem with finite
matching point, we have then solved the equations for the t-channel numerically in the single-channel
approximation. We have assessed the numerical importance of different input contributions for the
Muskhelishvili–Omnès problem and its solutions and examined the behavior of the Muskhelishvili–
Omnès solutions for the lowest t-channel partial waves (J ∈ {0, 1, 2}) with respect to varying both
the input and/or the framework in many ways, including their sensitivity to the ππ phase shifts, the
number of subtractions (n ∈ {0, 1, 2}), variation of the matching point tm, and taking the hyperbola
parameter a to −∞. In general, we find consistency with the KH80 solutions. However, our analysis
shows that the structure of the equations renders the t-channel partial waves fJ+ systematically less
well determined than their counterparts fJ− both due to an enhanced sensitivity to the subtraction
constants and an effectively lower number of subtractions. Finally, we have briefly discussed some

28This representation ensures that F V
π fulfills Watson’s theorem, such that the phases in (5.30) cancel. Strictly speaking,

using any representation that goes beyond the two-pion approximation would be inconsistent unless the corresponding
inelasticities are accounted for in the determination of f1

± and the unitarity relation (5.30) as well, as exemplified by
the breakdown of Watson’s theorem and the spectral functions’ becoming complex. Moreover, the precise value of 〈r2〉Vπ
is immaterial in the present context, since we merely wish to convey how the uncertainties in |f1

±| propagate into the
spectral functions. The present choice ensures a decent description of form-factor data, cf. [94].
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consequences for nucleon form factors, in particular our analysis gives a first indication where the
largest uncertainties in the spectral functions are to be expected.

The next step in the solution of our system of Roy–Steiner equations will be the incorporation
of K̄K intermediate states in a full two-channel Muskhelishvili–Omnès treatment of the t-channel
S-wave, which will have immediate consequences for the extraction of the πN σ term via the scalar
form factor of the nucleon [82]. Having then solved the t-channel part of the system, the s-channel
equations are solvable with techniques similar to those employed in the context of ππ Roy equations,
and finally the iteration of the full system should determine the lowest partial waves as well as the
subtraction parameters. We are confident that the framework proposed in this article will allow for a
reliable extrapolation to the Cheng–Dashen point and thus for an accurate determination of the πN
σ term.
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A Partial-wave projection for the s-channel amplitudes

In this Appendix, the different contributions to the s-channel part (3.4)of the RS system are discussed.

A.1 Nucleon exchange

The useful general definitions

ǫI =

{
ǫ+ = +1 ,

ǫ− = −1 ,
ǫ̃± =

1± ǫI

2
, ǫ̃+ =

{
1 ,

0 ,
ǫ̃− =

{
0 ,

1 ,
for

{
I = + or J even ,

I = − or J odd ,

(A.1)
can be identified with

ǫI
.
= (−1)J , ǫ̃±

.
=

1± (−1)J

2
, (A.2)

for the cases where the crossing-symmetry constraint applies (i.e. J even/odd for I = +/−). Projecting
the HDR Born terms N I(s, t) of (2.48) onto s-channel partial waves via (3.2) leads to MacDowell-
symmetric nucleon pole contributions

N I
l+(W ) =

g2

16πW

{
(E +m)(W −m)

[
ǫI
Ql(y)

q2
+ 2δl0

(
1

m2 − s
− ǫ̃−
m2 − a

)]

+ (E −m)(W +m)

[
ǫI
Ql+1(y)

q2

]}

= −N I
(l+1)−(−W ) ∀ l ≥ 0 , (A.3)
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which, by defining the abbreviation29

N̄ I
l±(W ) =

g2

16πW

{
(E +m)(W −m)

[
ǫI
Ql(y)

q2
+

2δl0
m2 − s

]
+ (E −m)(W +m)

[
ǫI
Ql±1(y)

q2
+

2δl±1,0

m2 − s

]}

(A.4)
for later convenience, can also be written in the form

N+
l+(W ) = N̄+

l+, N−
l+(W ) = N̄−

l+ − g2

4π

(E +m)(W −m)

2W

δl0
m2 − a

, ∀ l ≥ 0 ,

N+
l−(W ) = N̄+

l−, N−
l−(W ) = N̄−

l− − g2

4π

(E −m)(W +m)

2W

δl1
m2 − a

, ∀ l ≥ 1 , (A.5)

and where we have defined

y(s) = 1− s+m2 − Σ

2q2
= zs(s, t(s, u = m2)) = xs(s, s

′ = m2) (A.6)

(xs(s, s
′) will be introduced in (A.21)). Ql(z) denotes the Legendre functions of the second kind.

The Ql(z) obey a recursion relation similar to the one for the usual Legendre polynomials Pl(z)
(for l ≥ 0)

(l + 1)Pl+1(z) + lPl−1(z) = (2l + 1)zPl(z) ,

(l + 1)Ql+1(z) + lQl−1(z) = (2l + 1)zQl(z) − δl0 , (A.7)

which, together with Ql = Pl = 0 for l < 0, leads in particular to (cf. (A.56) for the general formula)

Q1(z) = P1(z)Q0(z)− 1 , Q2(z) = P2(z)Q0(z)−
3

2
z , Q3(z) = P3(z)Q0(z)−

5z2

2
+

2

3
. (A.8)

From the Neumann integral representation for general complex argument z [96]

Ql(z) =
1

2

1∫

−1

dx
Pl(x)

z − x
= (−1)l+1Ql(−z) , (A.9)

one can read off the lowest function for general real argument y

Q0(y ± iǫ) =
1

2

1∫

−1

dx

y − x± iǫ
=

1

2
log

∣∣∣∣
1 + y

1− y

∣∣∣∣∓ i
π

2
θ(1− y2) . (A.10)

We also need the analytic continuation for purely imaginary argument z = iy, e.g. for y > 1

Q0(iy) =
1

2
log

iy + 1

iy − 1
=

1

2
log

1 + iy

1− iy
− i

π

2
= i
(
arctan y − π

2

)
= −Q0(−iy) . (A.11)

Functions with l ≥ 1 may then be obtained via either the recursion relation (A.7) or the reduction
formula (A.56).

29Of course, also this form of the nucleon pole terms obeys the MacDowell symmetry relation (3.3), since the term
proportional to δl+1,0/δl0 vanishes for N̄I

l± as a consequence of l starting at 0/1, respectively.
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A.2 s- and u-channel exchange

By introducing a convenient matrix notation via

AI =

(
AI

BI

)
, f Il =

(
f Il+

f I(l+1)−

)
, (A.12)

the crossing properties of the even and odd invariant amplitude combinations (2.18) read

AI(ν, t) = ǫIσ3 A
I(−ν, t) , σ3 =

(
1 0
0 −1

)
. (A.13)

While the s-channel partial-wave projection (3.2) can be rewritten as

f Il (W ) =

1∫

−1

dzs R
l(W, zs)A

I(s, t)
∣∣∣
t=t(s,zs)

, (A.14)

where the projection kernel matrix is given by

Rl(W, zs) =

(
R1

l,l+1 R2
l,l+1

R1
l+1,l R2

l+1,l

)
, (A.15)

R1
kn(W, zs) =

1

16πW

{
(E +m)Pk(zs)− (E −m)Pn(zs)

}
= −R1

nk(−W, zs) ,

R2
kn(W, zs) =

1

16πW

{
(E +m)(W −m)Pk(zs) + (E −m)(W +m)Pn(zs)

}
= −R2

nk(−W, zs) ,

the s-channel partial-wave expansion, i.e. the inversion of (A.14), takes the form [97]

AI(s, t)
∣∣∣
t=t(s,zs)

=

∞∑

l=0

Sl(W, zs)f
I
l (W ) , (A.16)

with the expansion kernel matrix

Sl(W, zs) =

(
S1
l+1,l −S1

l,l+1

S2
l+1,l −S2

l,l+1

)
,

S1
kn(W, zs) = 4π

{
W +m

E +m
P ′
k(zs) +

W −m

E −m
P ′
n(zs)

}
= −S1

nk(−W, zs) ,

S2
kn(W, zs) = 4π

{
1

E +m
P ′
k(zs)−

1

E −m
P ′
n(zs)

}
= −S2

nk(−W, zs) . (A.17)

In accordance with the matrix form of the MacDowell symmetry relation (3.3)

f Il (W ) = −σ1f
I
l (−W ) , σ1 =

(
0 1
1 0

)
, (A.18)

these kernels obey the symmetry relations

Rl(W, zs) = −σ1R
l(−W, zs) , Sl(W, zs) = −Sl(−W, zs)σ1 . (A.19)
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With the definitions (2.51) the s- and u-channel terms of the HDRs (2.44) thus can be cast into the
matrix form

AI(s, t)
∣∣∣
s+u

t=t(s,zs)=−2q2(1−zs)
=

1

π

∞∫

s+

ds′ hI
s[s, s

′; zs] ImAI(s′, t′)
∣∣∣
t′=t′(s′,z′s)=−2q′2(1−z′s)

, (A.20)

where the HDR kernel matrix hI
s is given by

hI
s(s, s

′; zs) = h1σ0 − ǫIh2σ3 , σ0 = 12 =

(
1 0
0 1

)
, xs(s, s

′) = 1− s+ s′ − Σ

2q2
,

h1(s, s
′) =

1

s′ − s
− 1

2

1

s′ − a
, h2(s, s

′; zs) =
1

2q2
1

xs − zs
+

1

2

1

s′ − a
, (A.21)

and [s, s′; zs] indicates that the whole integrand is to be understood as a function of these variables,
which can be achieved using

z′s(s, s
′; zs) = αzs + β , α(s, s′) =

q2

q′2
s− a

s′ − a
, β(s, s′) = 1− α− s′ − s

s′ − a

s+ s′ − Σ

2q′2
. (A.22)

By expanding the absorptive part of the s- and u-channel HDR terms given in (A.20) into s-channel
partial waves via (A.16) and projecting out s-channel partial waves again by means of (A.14), we
arrive at the partial-wave dispersion relations

f Il (W )
∣∣∣
s+u

=
1

π

∞∫

W+

dW ′
∞∑

l′=0

Kll′,I(W,W ′) Im f Il′(W
′) , (A.23)

where the s- and u-channel kernel matrix is defined by

Kll′,I(W,W ′) = 2W ′
1∫

−1

dzs R
l(W, zs)h

I
s [W,W

′; zs]S
l′(W ′, z′s) . (A.24)

Due to the symmetry relations

− σ1K
ll′,I(−W,W ′) = Kll′,I(W,W ′) = Kll′,I(W,−W ′)σ1 , (A.25)

which follow from the relations (A.19), the s- and u-channel kernel matrix can be written with only
one kernel function according to

Kll′,I(W,W ′) =

(
KI

ll′(W,W
′) KI

ll′(W,−W ′)
−KI

ll′(−W,W ′) −KI
ll′(−W,−W ′)

)
,

KI
ll′(W,W

′) = 2W ′
1∫

−1

dzs

{
Rl(W, zs)h

I
s [W,W

′; zs]S
l′(W ′, z′s)

}
1,1

, (A.26)

where the subscript denotes the 1, 1-th element of the matrix in the brackets. The PWDRs (A.23)
then take the form already stated in (3.4)

f Il+(W )
∣∣∣
s+u

=
1

π

∞∫

W+

dW ′
∞∑

l′=0

{
KI

ll′(W,W
′) Im f Il′+(W

′) +KI
ll′(W,−W ′) Im f I(l′+1)−(W

′)
}

= −f I(l+1)−(−W )
∣∣∣
s+u

. (A.27)
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Defining the structure

ϕ
[
akn
∣∣b(W,W ′)

]
=
W ′

W

{
b(W,−W ′)akn + b(W,W ′)ak,n+1

+ b(−W,−W ′)ak+1,n + b(−W,W ′)ak+1,n+1

}
, (A.28)

where akn(s, s
′) is to be understood as a function invariant under sign changes in W and W ′, and

introducing the kinematical abbreviations

E′(W ′) = E(W ′) , δ(W,W ′) =
E +m

E′ +m

[
W ′ +W

]
, ̺(W,W ′) =

E +m

E′ +m

[
W ′ −W + 2m

]
,

κ
I(W,W ′) =

1

2

[
δ(W,W ′) + ǫI̺(W,W ′)

]
=
E +m

E′ +m

[
ǫ̃+(W

′ +m) + ǫ̃−(W −m)
]
, (A.29)

as well as the angular kernels

Ull′(s, s
′) =

1

2

1∫

−1

dzs Pl(zs)P
′
l′(z

′
s) , Vll′(s, s

′) =
1

2

1∫

−1

dzs
Pl(zs)P

′
l′(z

′
s)

xs − zs
, (A.30)

the general s- and u-channel kernel function can be written as

KI
ll′(W,W

′) = h1ϕ
[
Ull′
∣∣δ(W,W ′)

]
− ǫI

2
ϕ

[
Vll′

q2
+

Ull′

s′ − a

∣∣∣∣̺(W,W ′)

]

=
ϕ
[
Ull′
∣∣δ(W,W ′)

]

s′ − s
− ǫI

ϕ
[
Vll′
∣∣̺(W,W ′)

]

2q2
− ϕ

[
Ull′
∣∣κI(W,W ′)

]

s′ − a
. (A.31)

Since ϕ[akn|b(W,W ′)] encodes the MacDowell symmetry (3.3) for both pairs (k,W ) and (n,W ′), we
can decompose it in two ways

ϕ
[
akn
∣∣b(W,W ′)

]
= ϕ1

[
akn
∣∣b(W,W ′)

]
− ϕ1

[
ak+1,n

∣∣b(−W,W ′)
]
,

= ϕ2

[
akn
∣∣b(W,W ′)

]
− ϕ2

[
ak,n+1

∣∣b(W,−W ′)
]
,

ϕ1

[
akn
∣∣b(W,W ′)

]
=
W ′

W

{
b(W,−W ′)akn + b(W,W ′)ak,n+1

}
,

ϕ2

[
akn
∣∣b(W,W ′)

]
=
W ′

W

{
b(W,−W ′)akn + b(−W,−W ′)ak+1,n

}
, (A.32)

and with the definitions

KI,i
ll′ (W,W

′) =
ϕi

[
Ull′
∣∣δ(W,W ′)

]

s′ − s
− ǫI

ϕi

[
Vll′
∣∣̺(W,W ′)

]

2q2
− ϕi

[
Ull′
∣∣κI(W,W ′)

]

s′ − a
i ∈ {1, 2} , (A.33)

the kernels exhibit the following interrelations

KI
ll′(W,W

′) = KI,1
ll′ (W,W

′)−KI,1
l+1,l′(−W,W ′) = KI,2

ll′ (W,W
′)−KI,2

l,l′+1(W,−W ′) (A.34)

that may be used to write down explicit expressions of the kernels in a compact form. However,
for numerical evaluations a different prescription is preferable. The part of (A.31) that contains the
s-channel cut can be decomposed according to

ϕ
[
Ull′
∣∣δ(W,W ′)

]

s′ − s
=
γll′(W,W

′)
W ′ −W

+
1

W ′ +W

W ′

W

{
E +m

E′ −m
Ull′ −

E −m

E′ +m
Ul+1,l′+1

}
,

γll′(W,W
′) =

W ′

W

{
E +m

E′ +m
Ul,l′+1 −

E −m

E′ −m
Ul+1,l′

}
. (A.35)
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Using the identity
1∫

−1

dz P ′
l′(z)

[
Pl±1(z) − zPl(z)

]
=

2δll′

2l + 1

{
−l
l + 1

}
, (A.36)

we can easily calculate its residue at the pole W ′ =W (where α = 1, β = 0, and thus z′s = zs)

Res

[
γll′(W,W

′)
W ′ −W

,W ′ =W

]
= γll′(W,W ) = Ul,l′+1(s, s)− Ul+1,l′(s, s) = δll′ , (A.37)

which together with the decompositions

Ull′(W,W
′) = Ull′(W,W ) + (W ′ −W )Ūll′(W,W

′) ,

W ′

W

E ±m

E′ ±m
= 1 + (W ′ −W )c± , c±(W,W

′) =
(W ′ +W )Σ− ± 2mWW ′

2W ′(E′ ±m)s
, (A.38)

leads us to the alternative form of the kernels KI
ll′(W,W

′)

KI
ll′(W,W

′) =
δll′

W ′ −W
+ K̄I

ll′(W,W
′) ,

K̄I
ll′(W,W

′) = Ūl,l′+1(W,W
′)− Ūl+1,l′(W,W

′) + c+Ul,l′+1 − c−Ul+1,l′ +
1

W ′ +W

W ′

W

{
E +m

E′ −m
Ull′

− E −m

E′ +m
Ul+1,l′+1

}
− ǫI

ϕ
[
Vll′
∣∣̺(W,W ′)

]

2q2
− ϕ

[
Ull′
∣∣κI(W,W ′)

]

s′ − a
, (A.39)

where the first term is the usual Cauchy kernel for the s-channel cut (contributing only for l = l′) and
the kernels K̄I

ll′(W,W
′) contain only the left-hand cut. In order to derive explicit expressions for the

angular kernels Ull′(W =
√
s,W ′ =

√
s′) from (A.30) and subsequently their regular parts Ūll′(W,W

′)
from (A.38), we use the following expansion [96]

Pl(zs) =
l∑

λ=0

alλx
λ , alλ =

(−1)λ(l + λ)!

(λ!)2(l − λ)!
, x =

1− zs
2

, (A.40)

and hence

P ′
l′(z

′
s) = −1

2

l′−1∑

λ′=0

(λ′ + 1)al
′

λ′+1x
′λ′

, x′ =
1− z′s

2
= ω + αx , ω(s, s′) =

1− (α+ β)

2
, (A.41)

together with the binomial theorem and the Saalschütz identity [96]

l∑

λ=0

alλ
µ+ λ+ 1

= (−1)l
(µ!)2

(µ − l)!(µ + l + 1)!
(µ ≥ l) , (A.42)

to arrive at the general expression for the angular kernel Ull′

Ull′(s, s
′) =

(−1)l+1

2

l′−1∑

λ′=l

(λ′ + 1)al
′

λ′+1

λ′∑

µ=l

(
λ′

µ

)
(µ!)2

(µ− l)!(µ + l + 1)!
ωλ′−µαµ . (A.43)

These kernels show the following asymptotic behavior:

Ull′ ∼ q2l for q → 0 , Ull′ ∼ q′−2l′+2 for q′ → 0 , Ull′ ∼ q′−4l for q′ → ∞ , (A.44)
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and, in particular, the lowest kernels are given by (note that Ul0 = 0 and Ul1 = δl0)

Ull′ = 0 for l′ ≤ l , Ul,l+1 = αl , Ul,l+2 = (2l + 3)βαl ,

Ul,l+3 =
αl

2

{
(2l + 5)

[
α2 + (2l + 3)β2

]
− (2l + 3)

}
. (A.45)

From (A.43) and (A.30) we can easily deduce for W ′ =W

Ull′(W,W ) =
l′−1∑

λ′=l

uλ
′

ll′ =

{
0 for l′ ≤ l or l′ − l even ,

1 for l′ − l odd ,

uλ
′

ll′ =
(−1)l+λ′

(l′ + λ′ + 1)!

2(λ′ + 1)(l′ − λ′ − 1)!(λ′ − l)!(l + λ′ + 1)!
, (A.46)

which again yields Ul,l′+1(W,W )− Ul+1,l′(W,W ) = δll′ . By defining

q2

q′2
= 1 + (W ′ −W )d1 , d1(W,W

′) =
W ′ +W

4q′2

[
Σ2
−
ss′

− 1

]
,

s− a

s′ − a
= 1 + (W ′ −W )d2 , d2(W,W

′) = −W
′ +W

s′ − a
, (A.47)

we can rewrite the powers of α according to (note that b0 = 0)

αµ = 1+ (W ′ −W )bµ , bµ(W,W
′) =

µ−1∑

k=0

(
µ

k + 1

)
(W ′ −W )k

{
dk+1
1

(
s− a

s′ − a

)µ

+ dk+1
2

}
, (A.48)

which together with the definitions

ω = (W ′ −W )ω̄ , ω̄(W,W ′) =
W ′ +W

4q′2
s+ s′ − Σ

s′ − a
,

Ũll′(W,W
′) =

(−1)l+1

2

l′−1∑

λ′=l

(λ′ + 1)al
′

λ′+1

λ′−1∑

µ=l

(
λ′

µ

)
(µ!)2

(µ − l)!(µ + l + 1)!
ωλ′−1−µαµ , (A.49)

allows us to give the explicit form of the regular part Ūll′ of the angular kernel Ull′ as

Ūll′(W,W
′) =

l′−1∑

λ′=l

uλ
′

ll′bλ′ + ω̄Ũll′ , (A.50)

from which we can easily obtain the lowest Ūll′ (note that Ūl0 = 0 = Ūl1)

Ūll′ = 0 for l′ ≤ l , Ūl,l+1 = bl , Ūl,l+2 = −(2l + 3)
{
bl+1 − bl + 2ω̄αl

}
,

Ūl,l+3 = (2l + 5)(2l + 3)

{
(l + 2)

[
bl+2

2l + 3
+

bl
2l + 5

]
− bl+1 − ω̄αl(1− α+ β)

}
. (A.51)

The angular kernels Vll′ can be expressed by the kernels Ull′ as follows: from the integral representation
of Ull′ (A.30) we can deduce that

P ′
l′(z

′
s) =

l′−1∑

n=0

(2n+ 1)Unl′Pn(zs) , (A.52)
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and inserting this into the integral representation of Vll′ (A.30) yields

Vll′ =

l′−1∑

n=0

(2n+ 1)Unl′





1

2

1∫

−1

dzs
Pn(zs)Pl(zs)

xs − zs



 . (A.53)

By using the identity

1

2

1∫

−1

dx
Pn(x)Pl(x)

z − x
= Pn(z)Ql(z) for n ≤ l , (A.54)

we can write

Vll′ = Ql(xs)P
′
l′(x

′
s)−

l′−1∑

n=l+1

(2n + 1)Unl′

{
Pn(xs)Ql(xs)− Pl(xs)Qn(xs)

}
,

x′s(s, s
′) = αxs + β = 1− s′ + s− Σ

2q′2
= xs(s

′, s) (A.55)

(note that the sum vanishes for l′ ≤ l + 1), and with the aid of Wl−1(z), which is a polynomial of
degree l − 1 in z defined by [96]

Ql(z) = Q0(z)Pl(z)−Wl−1(z) , W−1 = 0 , (A.56)

leading to the integral representation

Wl−1(z) =
1

2

1∫

−1

dx
Pl(z)− Pl(x)

z − x
, (A.57)

the angular kernels Vll′ take the general form

Vll′(s, s
′) = Ql(xs)P

′
l′(x

′
s)− V̄ll′ ,

V̄ll′(s, s
′) =

l′−1∑

n=l+1

(2n+ 1)Unl′

{
Pl(xs)Wn−1(xs)− Pn(xs)Wl−1(xs)

}
. (A.58)

The V̄ll′ only contribute for l′ ≥ l + 2

V̄ll′ = 0 for l′ ≤ l + 1 , (A.59)

and we can immediately read off

Vl0 = 0 , Vl1 = Ql(xs) , V0l′ = Q0(xs)P
′
l′(x

′
s)−

l′−1∑

n=1

(2n + 1)Unl′Wn−1(xs) , (A.60)

where the second equation can also be seen directly by comparing (A.30) with (A.9). Furthermore,
one easily obtains the asymptotic behavior

Vll′ ∼ q2l+2 for q → 0 , Vll′ ∼ q′−2l′+2 for q′ → 0 , Vll′ ∼ q′−2l−2 for q′ → ∞ . (A.61)
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From (A.57) or from Christoffel’s formula for l ≥ 1 [96]

Wl−1(z) =

⌊
l−1
2

⌋
∑

λ=0

2(l − λ)− (2λ+ 1)

(l − λ)(2λ+ 1)
Pl−(2λ+1)(z) ,

⌊
l − 1

2

⌋
=

{
l
2 − 1 for l ≥ 2 even ,
l−1
2 for l ≥ 1 odd ,

(A.62)

both yielding (also in agreement with (A.8) and (A.56)) besides W−1 = 0

W0 = 1 , W1(z) =
3

2
z , W2(z) =

5

2
z2 − 2

3
, (A.63)

where it is useful to note that Wl(z) like Pl(z) contains only even/odd powers of z for l even/odd,
respectively, we can immediately deduce the non-vanishing angular kernels Ull′ , Ūll′ , and Vll′ for l

′ ≤ 3

Ul1 = δl0 , Ul2 = αδl1 + 3βδl0 , Ul3 = α2δl2 + 5αβδl1 +
1

2

{
5[α2 + 3β2]− 3

}
δl0 ,

Ūl2 = b1δl1 − 3
{
b1 + 2ω̄

}
δl0 ,

Ūl3 = b2δl2 + 5
{
b1 − b2 − 2ω̄α

}
δl1 − 5

{
3b1 − 2b2 + 3ω̄(1− α+ β)

}
δl0 , (A.64)

Vl1 = Ql(xs) , Vl2 = 3x′sQl(xs)− 3αδl0 , Vl3 = P ′
3(x

′
s)Ql(xs)−

5

2
α2δl1 −

15

2
α
{
αxs + 2β

}
δl0 ,

that are needed for the kernels KI
ll′(W,W

′) for all combinations (l ≥ 0, l′ ≤ 2) according to (A.39)

KI
l0(W,W

′) =

{
1

W ′ −W
+ c+ − W ′

W

κ
I(W,W ′)
s′ − a

}
δl0

− ǫI

2q2
W ′

W

{
̺(W,W ′)Ql(xs) + ̺(−W,W ′)Ql+1(xs)

}
,

KI
l1(W,W

′) =

{
1

W ′ −W
+ b1 + αc+

}
δl1 +

{
− 3
[
b1 + 2ω̄ − βc+

]
+

1

W ′ +W

W ′

W

(
E +m

E′ −m

− α
E −m

E′ +m

)}
δl0 −

ǫI

2q2
W ′

W

{
− 3α̺(W,W ′)δl0 +

[
3x′s̺(W,W

′) + ̺(W,−W ′)
]
Ql(xs)

+
[
3x′s̺(−W,W ′) + ̺(−W,−W ′)

]
Ql+1(xs)

}

− 1

s′ − a

W ′

W

{
ακI(W,W ′)δl1 +

[
3βκI(W,W ′) + κ

I(W,−W ′) + ακI(−W,W ′)
]
δl0

}
,

KI
l2(W,W

′) =

{
1

W ′ −W
+ b2 + α2c+

}
δl2 +

{
5
[
b1 − b2 − α(2ω̄ − βc+)

]
+

α

W ′ +W

W ′

W

(
E +m

E′ −m

− α
E −m

E′ +m

)}
δl1 +

{
− 2(8b1 − 5b2)− 15ω̄(1− α+ β) +

1

2
(5[α2 + 3β2]− 3)c+

− αc− +
β

W ′ +W

W ′

W

(
3
E +m

E′ −m
− 5α

E −m

E′ +m

)}
δl0

− ǫI

2q2
W ′

W

{
− α

[
15
{α
2
xs + β

}
̺(W,W ′) + 3̺(W,−W ′) +

5

2
α̺(−W,W ′)

]
δl0

− 5

2
α2̺(W,W ′)δl1 +

[
P ′
3(x

′
s)̺(W,W

′) + 3x′s̺(W,−W ′)
]
Ql(xs)

+
[
P ′
3(x

′
s)̺(−W,W ′) + 3x′s̺(−W,−W ′)

]
Ql+1(xs)

}
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− 1

s′ − a

W ′

W

{
α2

κ
I(W,W ′)δl2 + α

[
5βκI(W,W ′) + κ

I(W,−W ′) + ακI(−W,W ′)
]
δl1

+
[1
2
(5[α2 + 3β2]− 3)κI(W,W ′) + 3βκI(W,−W ′)

+ 5αβκI(−W,W ′) + ακI(−W,−W ′)
]
δl0

}
. (A.65)

From KI
l0(W,W

′) in the form according to (A.31)

KI
l0(W,W

′) =
1

2W

W ′

E′ +m

{
(E +m)

[
(W +W ′)

2δl0
s′ − s

+ ǫI(W −W ′ − 2m)
Ql(xs)

q2

]
(A.66)

+ ǫI(E −m)(W +W ′ + 2m)
Ql+1(xs)

q2
− (E +m)

[
ǫ̃+(W

′ +m) + ǫ̃−(W −m)
] 2δl0
s′ − a

}
,

we can deduce that the nucleon pole terms (A.3) are reproduced by

N I
l+(W ) = −f2KI

l0(W,−W ′ = m) = −N I
(l+1)−(−W ) ∀ l ≥ 0 . (A.67)

The explicit formulae for the additional non-vanishing angular kernels Ull′ , Ūll′ , and Vll′ for (l ≤ 2, 4 ≤
l′ ≤ 6) needed for calculating the additional higher kernels KI

ll′ for (l ≤ 1, 3 ≤ l′ ≤ 5) via (A.39)
are displayed in Appendix A.4. Furthermore, we give the asymptotic behavior of the general kernel
function KI

ll′(W,W
′), which can be inferred from the asymptotic behavior of the angular kernels (A.44)

and (A.61),

for q → 0 KI
ll′(W,W

′) ∼ q2l , KI
ll′(−W,W ′) ∼ q2l+2 ,

for q′ → 0 KI
ll′(W,W

′) ∼ q′−2l′ , KI
ll′(W,−W ′) ∼ q−2l′−2 ,

for q′ → ∞ KI
ll′(W,W

′) ∼ q′−2l−1 , (A.68)

in agreement with the MacDowell symmetry relation (3.3). From (A.67) we can then read off the
asymptotic behavior of the nucleon pole terms

N I
l+(W ) ∼ N I

(l+1)−(−W ) ∼ q2l for q → 0 . (A.69)

A.3 t-channel exchange

With definitions (2.51) and relations (2.52) the t-channel terms of the HDRs (2.44) can be written as

AI(s, t)
∣∣∣
t

t=t(s,zs)
=

1

π

∞∫

tπ

dt′ hI
t [s, t

′; zs] ImAI(s′, t′)
∣∣∣
s′=s′(t′,z′t)

, (A.70)

where the HDR kernel matrix hI
t is given by

hI
t (s, t

′; zs) =
1

2q2
1

xt − zs

(
λI1 0
0 λI2

)
, xt(s, t

′) = 1 +
t′

2q2
= zs(s, t

′) ,

λIn(s, t
′; zs) =

( ν
ν ′

) 1+(−1)nǫI

2
(with x0 ≡ 1 ∀ x) , (A.71)
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and the integrand is to be understood as a function of [s, t′; zs] by using

z′t(s, t
′; zs) =

mν ′

p′tq
′
t

=
√
γzs + δ , γ(s, t′) =

q2(s− a)

2p′2t q
′2
t

,

δ(s, t′) =
(t′ − Σ+ 2a)2 − 4(s− a)(2q2 +Σ− s− a)

16p′2t q
′2
t

. (A.72)

The t-channel partial-wave expansions of the invariant amplitudes, i.e. the inversion of (3.6), read [49]

AI(s′, t′)
∣∣∣
s′=s′(t′,z′t)

= −4π

p′2t

∑

J

(2J + 1)(p′tq
′
t)
J

{
PJ(z

′
t)f

J
+(t

′)− m√
J(J + 1)

z′tP
′
J(z

′
t)f

J
−(t

′)

}
,

BI(s′, t′)
∣∣∣
s′=s′(t′,z′t)

= 4π
∑

J

2J + 1√
J(J + 1)

(p′tq
′
t)
J−1P ′

J(z
′
t)f

J
−(t

′) , (A.73)

where it is crucial that the sums only run over even J for I = + and odd J for I = − due to Bose
symmetry. Taken literally, the form (A.73) of the partial-wave expansions is only valid for t′ ≥ tN ,
since below the two-particle thresholds tN and tπ the CMS momenta p′t of the nucleons and q′t of the
pions become purely imaginary and one has to use p′− and q′− instead, respectively (cf. (2.11) and [29]).
In particular, in the unphysical range t′ ∈ [tπ, tN ) that we are interested in as the low-energy part of
the integration range t′ ∈ [tπ,∞), we have q′t ∈ R but p′t, z

′
t ∈ iR. However, the squares p′2t and q′2t

are always real (albeit not necessarily positive, cf. (2.12)) and since the combination p′tq
′
tz

′
t = mν ′ =

m(2s′+ t′−Σ) is always real as well, so is z′2t . Due to the fact that the Legendre polynomials and their
derivatives have definite parity PJ (−z) = (−1)JPJ (z) and P ′

J(−z) = (−1)J−1P ′
J(z), a closer look at

the expansions (A.73) shows that in all cases only powers of the real combinations p′tq
′
tz

′
t and additional

factors of powers of the likewise real squares p′2t and q′2t appear. Therefore, we can symbolically use
these formulae for all kinematical ranges and factor out powers of the real squared momenta whenever
necessary in order to form explicitly real quantities.

By introducing the t-channel partial-wave amplitudes into the matrix notation via30

fJ =

(
fJ+
fJ−

)
, (A.74)

the expansions (A.73) can be rewritten as

AI(s′, t′)
∣∣∣
s′=s′(t′,z′t)

=
∑

J

TJ(t′, z′t)f
J(t′) , (A.75)

where the expansion kernel matrix is given by

TJ(t′, z′t) = ζJ

(
uJ vJ
0 wJ

)
, ζJ(t

′) = 4π(2J + 1)(p′tq
′
t)
J−1 , (A.76)

uJ(t
′, z′t) = − q

′
t

p′t
PJ (z

′
t) , vJ(t

′, z′t) =
m√

J(J + 1)

q′t
p′t
z′tP

′
J(z

′
t) , wJ(t

′, z′t) =
1√

J(J + 1)
P ′
J(z

′
t) .

As the sum only runs over even J for I = + and odd J for I = − and thus the full information on
the crossing properties is already contained in the index J , we can redefine

λIn(s, t
′; zs) = λJn(s, t

′; zs) =
( ν
ν ′

) 1+(−1)n+J

2
(with x0 ≡ 1 ∀ x) , (A.77)

30In order to accommodate the fact that there is no f0
− to the matrix notation, we define f0

− ≡ 0 and in the following
all corresponding quantities (e.g. integral kernels) are also understood to vanish.
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and omit the index I in favor of J in the following. If we expand the imaginary part of the t-channel
HDR terms in (A.70) into t-channel partial waves via (A.75) and project out s-channel partial waves
again by use of (A.14), we can obtain the following PWDRs

f Il (W )
∣∣∣
t
=

1

π

∞∫

tπ

dt′
∑

J

GlJ(W, t′) Im fJ(t′) , (A.78)

where the t-channel kernel matrix is defined by

GlJ(W, t′) =

1∫

−1

dzs R
l(W, zs)h

I
t [s, t

′; zs]T
J(t′, z′t) . (A.79)

Due to the symmetry relation
GlJ(−W, t′) = −σ1G

lJ(W, t′) , (A.80)

which follows from (A.19) and is in accordance with the MacDowell symmetry (A.18), the t-channel
kernel matrix can be expressed by two kernel functions

GlJ(W, t′) =

(
GlJ(W, t

′) HlJ(W, t
′)

−GlJ(−W, t′) −HlJ(−W, t′)

)
, (A.81)

where in accordance with f0− ≡ 0 for the matrix notation we set Hl0 ≡ 0, and the PWDRs (A.78) take
the form already given in (3.4)

f Il+(W )
∣∣∣
t
=

1

π

∞∫

tπ

dt′
∑

J

{
GlJ(W, t

′) Im fJ+(t
′) +HlJ(W, t

′) Im fJ−(t
′)
}

= −f I(l+1)−(−W )
∣∣∣
t
. (A.82)

With the definitions

ψ
[
akn
∣∣d(W )

]
= d(W )akn + d(−W )ak+1,n , ηJ(W, t

′) =
2J + 1

4Wq2
(p′tq

′
t)
J

p′2t
, (A.83)

and by introducing the angular kernels

AlJ(s, t
′) =

1

2

1∫

−1

dzs λ
J
1

Pl(zs)PJ (z
′
t)

xt − zs
, BlJ(s, t

′) =
1

2

1∫

−1

dzs λ
J
2

Pl(zs)P
′
J (z

′
t)

xt − zs
,

ClJ(s, t
′) =

1

2

1∫

−1

dzs λ
J
1

Pl(zs)z
′
tP

′
J(z

′
t)

xt − zs
= JAlJ +Bl,J−1 , (A.84)

we can write the kernel functions as

GlJ(W, t
′) = −ηJψ

[
AlJ

∣∣E +m
]

∀ J ≥ 0 ,

HlJ(W, t
′) =

ηJ√
J(J + 1)

{
p′t
q′t
ψ
[
BlJ

∣∣(W −m)(E +m)
]
+mψ

[
ClJ

∣∣E +m
]}

∀ J ≥ 1 . (A.85)
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If we use the decomposition

ν

ν ′
1

xt − zs
=
µ1
z′t

+
µ2
z′t

1

xt − zs
, µ1(s, t

′) = − q2

2p′tq
′
t

, µ2(s, t
′) =

2s+ t′ − Σ

4p′tq
′
t

, (A.86)

we find for the angular kernels for even J

AlJ(s, t
′) =

1

2

1∫

−1

dzs
Pl(zs)PJ(z

′
t)

xt − zs
,

BlJ(s, t
′) =

µ1
2

1∫

−1

dzs Pl(zs)
P ′
J(z

′
t)

z′t
+
µ2
2

1∫

−1

dzs
Pl(zs)P

′
J(z

′
t)/z

′
t

xt − zs
, (A.87)

and for odd J

AlJ(s, t
′) =

µ1
2

1∫

−1

dzs Pl(zs)
PJ(z

′
t)

z′t
+
µ2
2

1∫

−1

dzs
Pl(zs)PJ(z

′
t)/z

′
t

xt − zs
,

BlJ(s, t
′) =

1

2

1∫

−1

dzs
Pl(zs)P

′
J(z

′
t)

xt − zs
, (A.88)

from which we can infer that only even powers of z′t occur and hence a square-root dependence on
zs is avoided. We now can work out the kernel functions explicitly, here given for all combinations
(l ≥ 0, J ≤ 2)

Gl0(W, t
′) = − 1

4Wq2p′2t

{
(E +m)Ql(xt)− (E −m)Ql+1(xt)

}
,

Gl1(W, t
′) =

3

4

{
(2s+ t′ − Σ)Gl0(W, t

′) +
E +m

2Wp′2t
δl0

}
,

Hl1(W, t
′) =

1√
2

{
3

4
Zl(W, t

′)−mGl1(W, t
′)

}
,

Gl2(W, t
′) =

5

16

{[
6s(s+ t′ − Σ) + (t′ − Σ)2 + 2Σ2

−
]
Gl0(W, t

′) + 3
(E +m)(s − a)

Wp′2t
δl0

}
,

Hl2(W, t
′) =

15

16
√
6

{
(2s + t′ − Σ)Zl(W, t

′)−m
[
4s(s+ t′ − Σ) + (t′ − Σ)2

]
Gl0(W, t

′)

− 2
E +m

W

[
m(s− a)

p′2t
+W −m

]
δl0

}
, (A.89)

where we have defined

Zl(W, t
′) =

1

Wq2

{
(E +m)(W −m)Ql(xt) + (E −m)(W +m)Ql+1(xt)

}
. (A.90)

From the expansion

Ql(xt) =

(
2q2

t′

)l+1

+O
((

2q2

t′

)l+2
)

for
1

xt − 1
=

2q2

t′
→ 0 , (A.91)
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we can finally deduce the asymptotic behavior of the non-vanishing general kernel functions (A.85)

for q → 0 GlJ (W, t
′) ∼ HlJ(W, t

′) ∼ q2l , GlJ(−W, t′) ∼ HlJ(−W, t′) ∼ q2l+2 ,

for q′t → 0 GlJ (W, t
′) ∼ HlJ(W, t

′) ∼ 1 ,

for p′t → 0 GlJ (W, t
′) ∼ HlJ(W, t

′) ∼ p′−2
t ,

for t′ → ∞ GlJ (W, t
′) ∼ HlJ(W, t

′) ∼ t′J−l−2 , (A.92)

in accordance with the MacDowell symmetry relation (3.3).

A.4 Higher kernel functions

Here, we display the explicit form of the additional angular kernels Ull′ , Ūll′ , and Vll′ for (l ≤ 2, 4 ≤
l′ ≤ 6) that are required for calculating the additional higher kernels KI

ll′ for (l ≤ 1, 3 ≤ l′ ≤ 5)
via (A.39) needed to incorporate higher resonances in the s-channel integrals. From (A.43) we obtain

U04 =
5

2
β
{
7α2 + 7β2 − 3

}
, U14 =

1

2
α
{
7α2 + 35β2 − 5

}
, U24 = 7α2β , (A.93)

U05 =
1

8

{
15− 70

(
α2 + 3β2

)
+ 63

(
α4 + 5β4 + 10α2β2

)}
, U15 =

7

2
αβ
{
9α2 + 15β2 − 5

}
,

U25 =
1

2
α2
{
9α2 + 63β2 − 7

}
, U06 =

21

8
β
{
5− 30

(
α2 + β2

)
+ 11

(
3α4 + 3β4 + 10α2β2

)}
,

U16 =
1

8
α
{
35− 126

(
α2 + 5β2

)
+ 33

(
3α4 + 35β4 + 42α2β2

)}
, U26 =

3

2
α2β

{
33α2 + 77β2 − 21

}
,

and (A.50) yields

Ū04 = −5
{
7b3 − 14b2 + 9b1 + ω̄

[
4− 14α(1 − α) + 7β(1 − α+ β)

]}
,

Ū14 = 21b3 − 35b2 + 15b1 − 35ω̄α(1 − α+ β) , Ū24 = −7
{
b3 − b2 + 2ω̄α2

}
,

Ū05 = 7
{
18b4 − 5(9b3 − 8b2 + 3b1)−

15

4
ω̄(1− α+ β)

[
(1− 3α)2 + 3β2

]}
,

Ū15 = −7
{
12b4 − 27b3 + 20b2 − 5b1 + ω̄α

[
2(5− 15α + 12α2) + 15β(1 − α+ β)

]}
,

Ū25 = 36b4 − 63b3 + 28b2 − 63ω̄α2(1− α+ β) ,

Ū06 = −21
{
22(b5 − 3b4) + 5(15b3 − 8b2 + 2b1) + ω̄

[
2(1 − 9α + 31α2 − 22α3(2− α))

+
β

4
(1− α+ β)(3− 11α(6 − 13α) + 33β2)

]}
,

Ū16 = 66(5b5 − 14b4) + 35(27b3 − 12b2 + 2b1)−
21

4
ω̄α(1− α+ β)

[
(5− 11α)2 + 55β2

]
,

Ū26 = −3
{
11(5b5 − 12b4) + 7(15b3 − 4b2) + ω̄α2

[
56 − 22α(7 − 5α) + 77β(1 − α+ β)

]}
. (A.94)

From (A.58) it follows that

V̄04 =
5

6
α
{
21(αxs)

2 + 63β(αxs) + 7α2 + 63β2 − 9
}
, V̄14 =

35

6
α2
{
(αxs) + 3β

}
, V̄24 =

7

3
α3 ,

V̄05 =
105

8
α
{
3(αxs)

3 + 12β(αxs)
2 +

(
α2 + 18β2 − 2

)
(αxs) + 4β

(
α2 + 3β2 − 1

)}
,

V̄15 =
7

8
α2
{
15(αxs)

2 + 60β(αxs) + 9α2 + 90β2 − 10
}
, V̄25 =

21

4
α3
{
(αxs) + 4β

}
,
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V̄06 =
21

40
α
{
165(αxs)

4 + 825β(αxs)
3 + 5

(
11α2 + 330β2 − 30

)
(αxs)

2

+ 25β
(
11α2 + 66β2 − 18

)
(αxs) + 25− 50α2 + 33α4 + 50

(
11α2 − 9

)
β2 + 825β4

}
,

V̄16 =
21

40
α2
{
55(αxs)

3 + 275β(αxs)
2 +

(
33α2 + 550β2 − 50

)
(αxs) + 5β

(
33α2 + 110β2 − 30

)}
,

V̄26 =
3

20
α3
{
77(αxs)

2 + 385β(αxs) + 2
(
33α2 + 385β2 − 35

)}
. (A.95)

We refrain from explicitly spelling out the form of bµ(W,W
′) for higher values of µ, as these functions

follow directly from their definition (A.48).

A.5 Subtracted kernel functions

Finally, we summarize the changes that are necessary if the subtracted versions of the HDRs are used
for the s-channel projection.

The modified pole terms are given by

N I
l+

∣∣n-sub(W ) = N̄ I
l+(W ) + ∆N̄ I

l+

∣∣n-sub(W ) = −N I
(l+1)−

∣∣n-sub(−W ) ,

∆N̄+
l+

∣∣2-sub(W ) =
δl0

16πW

{
(E +m)

[
2

(
g2

m
+ d+00 − 2q2d+01

)
+ (W −m)

(
s− s0 − q2

)b+00
m

]

− (E −m)
q2

3

(
4d+01 − (W +m)

b+00
m

)}
+

δl1
16πW

(E +m)
q2

3

(
4d+01 + (W −m)

b+00
m

)

1-sub−→ δl0
8πW

(E +m)

(
g2

m
+ d+00

)
,

∆N̄−
l+

∣∣2-sub(W ) =
δl0

16πW

{
(E +m)

[(
s− s0 − q2

)a−00
m

+ 2(W −m)

(
− g2

2m2
+ b−00 − 2q2b−01

)]

− (E −m)
q2

3

(
a−00
m

− 4(W +m)b−01

)}
+

δl1
16πW

(E +m)
q2

3

(
a−00
m

+ 4(W −m)b−01

)

1-sub−→ δl0
8πW

(E +m)(W −m)

(
− g2

2m2
+ b−00

)
, (A.96)

where for convenience we have defined non-vanishing corrections also for the unsubtracted case ac-
cording to (cf. (A.5))

∆N̄ I
l+

∣∣0-sub(W ) = −ǫ̃−
g2

4π

(E +m)(W −m)

2W

δl0
m2 − a

= −∆N̄ I
(l+1)−

∣∣0-sub(−W ) . (A.97)

The additional contributions to the s-channel kernels that fulfill the MacDowell symmetry rela-
tion (3.3) in both (W, l) and (W ′, l′) can be written for all (l ≥ 0, l′ ≥ 0) in the symmetric form

∆KI
ll′(W,W

′) = ∆̂K
I

ll′(W,W
′)− ∆̂K

I

l,l′−1(W,−W ′) + ∆̃K
I

ll′(W,W
′)− ∆̃K

I

l,l′−1(W,−W ′)

+
1

3

{
∆̃K

I

ll′(−W,W ′)− ∆̃K
I

l,l′−1(−W,−W ′)

− ∆̃K
I

l−1,l′(W,W
′) + ∆̃K

I

l−1,l′−1(W,−W ′)

}
,
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∆̂K
I

ll′
∣∣2-sub(W,W ′) = −W

′

W

{
κ
I(W,W ′)h0(s

′) + κ
−I(W,W ′)

2(s− s0)

(s′ − s0)2

}
P ′
l′+1

( [
z′s
]
(0,0)

)
δl0

= −W
′

W

{
δ(W,W ′)(s′ + s− 2s0) + ǫIρ(W,W ′)(s′ − s)

(s′ − s0)2

− κ
I(W,W ′)
s′ − a

}
P ′
l′+1

( [
z′s
]
(0,0)

)
δl0

1-sub−→ −W
′

W
κ
I(W,W ′)h0(s

′)P ′
l′+1

( [
z′s
]
(0,0)

)
δl0 ,

∆̃K
I

ll′
∣∣2-sub(W,W ′) = −W

′

W
2q2
{
ǫIρ(W,W ′)
(s′ − s0)2

P ′
l′+1

( [
z′s
]
(0,0)

)

− κ
I(W,W ′)h0(s

′)
[
∂tz

′
s

]
(0,0)

P ′′
l′+1

( [
z′s
]
(0,0)

)}
δl0

1-sub−→ 0 , (A.98)

where we have used that ǫ±I = ±ǫI . Note that for l′ = 0 the term proportional to (s′ − a)−1

cancels against the corresponding term in KI
l0(W,W

′) of (A.65) as for the nucleon pole terms (cf. the
relation (A.67)).

The additional contributions to GlJ and HlJ may be written as

∆GlJ(W, t
′) = ∆̂GlJ(W, t

′)− ∆̂Gl+1,J(−W, t′) ∀ (l ≥ 0, J ≥ 0) ,

∆HlJ(W, t
′) = ∆̂H lJ(W, t

′)− ∆̂H l+1,J(−W, t′) ∀ (l ≥ 0, J ≥ 1) , (A.99)

where for even J

∆̂GlJ

∣∣2-sub(W, t′) = E +m

2W
(2J + 1)

(p′tq
′
t)
J

t′p′2t

{
[
PJ(z

′
t)
]
(0,0)

δl0

− 2q2
(
1

t′
[
PJ (z

′
t)
]
(0,0)

+
[
∂tPJ (z

′
t)
]
(0,0)

)(
δl0 −

δl1
3

)}

1-sub−→ E +m

2W
(2J + 1)

(p′tq
′
t)
J

t′p′2t

[
PJ(z

′
t)
]
(0,0)

δl0 ,

∆̂H lJ

∣∣2-sub(W, t′) = −E +m

2W

2J + 1√
J(J + 1)

(p′tq
′
t)
J

t′p′2t

{(
W −m

2q′2t
(s− s0)

[
P ′
J(z

′
t)

z′t

]

(0,0)

+m
[
z′tP

′
J (z

′
t)
]
(0,0)

)
δl0 − 2q2

(
W −m

4q′2t

[
P ′
J (z

′
t)

z′t

]

(0,0)

+m

[
1

t′
[
z′tP

′
J (z

′
t)
]
(0,0)

+
[
∂t(z

′
tP

′
J(z

′
t))
]
(0,0)

])(
δl0 −

δl1
3

)}

1-sub−→ −E +m

2W

2J + 1√
J(J + 1)

(p′tq
′
t)
J

t′p′2t
m
[
z′tP

′
J(z

′
t)
]
(0,0)

δl0 , (A.100)

and for odd J

∆̂GlJ

∣∣2-sub(W, t′) = E +m

2W
(2J + 1)

(p′tq
′
t)
J−1

t′p′2t

1

2

[
PJ(z

′
t)

z′t

]

(0,0)

{
(
s− s0 − q2

)
δl0 + q2

δl1
3

}
1-sub−→ 0 ,

∆̂H lJ

∣∣2-sub(W, t′) = −E +m

2W

2J + 1√
J(J + 1)

(p′tq
′
t)
J−1

t′p′2t

{(
p′2t (W −m) +

m

2
(s− s0)

) [
P ′
J(z

′
t)
]
(0,0)

δl0
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− 2q2
(
p′2t (W −m)

[
1

t′
[
P ′
J(z

′
t)
]
(0,0)

+
[
∂tP

′
J(z

′
t)
]
(0,0)

]

+
m

4

[
P ′
J(z

′
t)
]
(0,0)

)(
δl0 −

δl1
3

)}

1-sub−→ −E +m

2W

2J + 1√
J(J + 1)

(p′tq
′
t)
J−1

t′
(W −m)

[
P ′
J (z

′
t)
]
(0,0)

δl0 . (A.101)

Note that again only even powers of momenta and z′t occur.

B Partial-wave projection for the t-channel amplitudes

In the following, we will discuss the different contributions to the t-channel part (3.7) of the RS system.

B.1 Nucleon exchange

In order to carry out the projection integrals (3.6) we rewrite s and u as functions of t and zt via

s(t, zt) =
1

2
(Σ− t+ 4ptqtzt) , u(t, zt) =

1

2
(Σ− t− 4ptqtzt) , (B.1)

which allows us to cast the nucleon pole terms of the HDRs (2.44) into the form

{
1

m2 − s
± 1

m2 − u
− 1± 1

2(m2 − a)

}∣∣∣∣
[t;zt]

=
1

2ptqt

{
1

ỹ − zt
∓ 1

(−ỹ)− zt

}
− 1± 1

2(m2 − a)
, (B.2)

where the upper/lower sign corresponds to even/odd J (i.e. to I = +/−) and we have defined, in
analogy to (A.6),

ỹ(t) =
t− 2M2

π

4ptqt
=
mνB
ptqt

= zt(s = m2, t) = x̃t(t, s
′ = m2) (B.3)

(x̃t(t, s
′) will be defined in (B.13)). By noting that the orthonormality of the Legendre polynomials

yields

1± 1

2

1∫

0

dz PJ (z)Pl=2m(z) =
δJl

2l + 1
=

1∓ 1

2

1∫

0

dz PJ(z)Pl=2n+1(z) ∀ J, l(m,n ∈ N0) , (B.4)

the nucleon pole terms of the PWDRs (3.7) can be written as (in analogy to (A.3))

ÑJ
+(t) =

g2

4π
m

{
ỹQJ(ỹ)

(ptqt)J
− δJ0 −

1

3

δJ1
m2 − a

}
∀ J ≥ 0 ,

ÑJ
−(t) =

g2

4π

√
J(J + 1)

2J + 1

{
QJ−1(ỹ)−QJ+1(ỹ)

(ptqt)J
− δJ1
m2 − a

}
∀ J ≥ 1 , (B.5)

which for later convenience may be expressed as (in analogy to (A.4))

ÑJ
+(t) = N̂J

+(t)−
g2

4π

m

3

δJ1
m2 − a

, N̂J
+(t) =

g2

4π
m

{
ỹQJ(ỹ)

(ptqt)J
− δJ0

}
, ∀ J ≥ 0 ,

ÑJ
−(t) = N̂J

−(t)−
g2

4π

√
2

3

δJ1
m2 − a

, N̂J
−(t) =

g2

4π

√
J(J + 1)

2J + 1

QJ−1(ỹ)−QJ+1(ỹ)

(ptqt)J
, ∀ J ≥ 1 . (B.6)
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Note that for t ∈ (tπ, tN ) due to pt ∈ iR also ỹ ∈ iR and hence we need the analytic continuations of
Ql(z) as discussed in Appendix A.1. However, the pole-term projections (B.5), (B.6) are real for all t
above the logarithmic branch point singularity at tπ−(M2

π/m)2 ≈ 3.98M2
π of the nucleon cut (which is

the left-hand cut for ỹ(t)2 ≤ 1 along the real axis due to the zt-projection of the nucleon pole terms),
since ỹ/(ptqt) and the squares p2t and ỹ

2 are always real, and thus we can rewrite the projections solely
in terms of real quantities due to the defined parity (A.9) of the QJ(ỹ). Finally, we comment on the
asymptotic behavior for ptqt → 0, particularly including the vicinity of the aforementioned logarithmic
singularity. The ostensible poles in (B.5) are canceled by the asymptotics of QJ(ỹ) for ỹ → ∞. In
this limit, we may abort the series representation of Ql(z) valid for |z| > 1 [96]

Ql(z) =
2l(l!)2

(2l + 1)!

{
z−(l+1) +

(l + 1)(l + 2)

2(2l + 3)
z−(l+3) +

(l + 1)(l + 2)

2(2l + 3)

(l + 3)(l + 4)

4(2l + 5)
z−(l+5) + . . .

}
(B.7)

after the first term and obtain the leading contributions

ÑJ
+(t) =

g2

4π

J !

(2J + 1)!!
m

{(
4

t− 2M2
π

)J

− δJ0 −
δJ1

m2 − a

}
+O(p2t q

2
t ) ∀ J ≥ 0 ,

ÑJ
−(t) =

g2

4π

J !

(2J + 1)!!

√
J + 1

J

{(
4

t− 2M2
π

)J

− δJ1
m2 − a

}
+O(p2t q

2
t ) ∀ J ≥ 1 . (B.8)

In particular, it follows that the leading contribution to Ñ0
+(t) vanishes, such that Ñ0

+(t) even involves
zeros for ptqt → 0. However, higher orders need to be taken into account in the approximations (B.8)
in order to obtain precise numerical results in particular for qt → 0, since the pole terms vary rapidly
in the vicinity of tπ. Note that (B.5) and (B.8) reduce to the results given in [29] and [56] if the terms
containing the hyperbola parameter a (that only contribute for J = 1 anyway) are dropped.

B.2 s- and u-channel exchange

We may rewrite the t-channel partial-wave projection (3.6) in matrix form as

fJ(t) =

1∫

0

dzt T̃
J(t, zt)A

I(s, t)
∣∣∣
s=s(t,zt)

, (B.9)

where the projection kernel is given by

T̃J(t, zt) = ζ̃J

(
ũJ ṽJ
0 w̃J

)
, ζ̃J(t) =

1

4π(ptqt)J−1
, (B.10)

ũJ(t, zt) = −pt
qt
PJ (zt), ṽJ(t, zt) = mztPJ(zt), w̃J(t, zt) =

√
J(J + 1)

2J + 1

[
PJ−1(zt)− PJ+1(zt)

]
.

For the following, we need the matrix form of both s- and u-channel HDR terms (2.44) according to

AI(s, t)
∣∣∣
s+u

s=s(t,zt)
=

1

π

∞∫

s+

ds′ hI
s[t, s

′; zt] ImAI(s′, t′)
∣∣∣
t′=t′(s′,z′s)

, (B.11)

where the kernel matrix hI
s is given in (A.21), and [t, s′; zt] indicates that the whole integrand is to be

understood as a function of these variables, which can be done by using (B.1) and thereby

{
h1 ∓h2

}∣∣∣
[t,s′;zt]

=

{
1

s′ − s
± 1

s′ − u
− 1± 1

2(s′ − a)

}∣∣∣∣
[t,s′;zt]

=
1

2ptqt

{
1

x̃t − zt
∓ 1

(−x̃t)− zt

}
− 1± 1

2(s′ − a)
.

(B.12)
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The upper/lower sign corresponds to even/odd J and we have defined in analogy to (A.21)

x̃t(t, s
′) =

t+ 2s′ − Σ

4ptqt
= zt(s

′, t) . (B.13)

According to (A.72), the relation between z′s and zt in (B.11) is given by

z′s(t, s
′; zt) =

z2t − δ̃

γ̃
, γ̃(t, s′) =

q′2(s′ − a)

2p2t q
2
t

= γ(s′, t) ,

δ̃(t, s′) =
(t− Σ+ 2a)2 − 4(s′ − a)(2q′2 +Σ− s′ − a)

16p2t q
2
t

= δ(s′, t) . (B.14)

Expanding the absorptive parts of (B.11) into s-channel partial waves via (A.16) and projecting onto
t-channel partial waves by means of (B.9) leads us to the PWDRs for the t-channel partial waves

fJ(t)
∣∣∣
s+u

=
1

π

∞∫

W+

dW ′
∞∑

l=0

G̃Jl(t,W ′) Im f Il (W
′) , (B.15)

with the kernel matrix

G̃Jl(t,W ′) = 2W ′
1∫

0

dzt T̃
J(t, zt)h

I
s[t,W

′; z′s]S
l(W ′, z′s) . (B.16)

As a remnant of the MacDowell symmetry, (A.19) induces the symmetry property

G̃Jl(t,−W ′) = G̃Jl(t,W ′)σ1 , (B.17)

such that the parameterization with two kernel functions

G̃Jl(t,W ′) =

(
G̃Jl(t,W

′) G̃Jl(t,−W ′)
H̃Jl(t,W

′) H̃Jl(t,−W ′)

)
(B.18)

is justified, where again according to f0− ≡ 0 we set H̃0l ≡ 0 for the matrix notation. This reproduces
the s- and u-channel part of (3.7)

fJ+(t)
∣∣∣
s+u

=
1

π

∞∫

W+

dW ′
∞∑

l=0

{
G̃Jl(t,W

′) Im f Il+(W
′) + G̃Jl(t,−W ′) Im f I(l+1)−(W

′)
}

∀ J ≥ 0 ,

fJ−(t)
∣∣∣
s+u

=
1

π

∞∫

W+

dW ′
∞∑

l=0

{
H̃Jl(t,W

′) Im f Il+(W
′) + H̃Jl(t,−W ′) Im f I(l+1)−(W

′)
}

∀ J ≥ 1 . (B.19)

If we introduce the abbreviations (cf. (A.83))

ψ̃
[
akn
∣∣d(W ′)

]
= d(W ′)ak,n+1 + d(−W ′)akn , η̃J(t,W

′) =
2W ′

(ptqt)J−1
, (B.20)

we find for the kernel functions

G̃Jl(t,W
′) = η̃J

{
−pt
qt
ψ̃

[
ÃJl

∣∣∣∣
W ′ +m

E′ +m

]
+mψ̃

[
B̃Jl

∣∣∣∣
1

E′ +m

]}
∀ J ≥ 0 ,

H̃Jl(t,W
′) = η̃J

√
J(J + 1)

2J + 1
ψ̃

[
C̃Jl

∣∣∣∣
1

E′ +m

]
∀ J ≥ 1 , (B.21)
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where the angular kernels are given by

ÃJl(t, s
′) =

1∫

0

dzt PJ(zt)
{
h1 ∓ h2

}
P ′
l (z

′
s)
∣∣∣
[t,s′;zt]

,

B̃Jl(t, s
′) =

1∫

0

dzt PJ(zt)zt

{
h1 ± h2

}
P ′
l (z

′
s)
∣∣∣
[t,s′;zt]

,

C̃Jl(t, s
′) =

1∫

0

dzt

[
PJ−1(zt)− PJ+1(zt)

]{
h1 ± h2

}
P ′
l (z

′
s)
∣∣∣
[t,s′;zt]

= ÃJ−1,l − ÃJ+1,l . (B.22)

Decomposing these kernels according to

ÃJl(t, s
′) =

1

ptqt
P ′
l (z̃s)QJ(x̃t)− ĀJl(t, s

′) , B̃Jl(t, s
′) =

1

ptqt
P ′
l (z̃s)x̃tQJ(x̃t)− B̄Jl(t, s

′) ,

C̃Jl(t, s
′) =

1

ptqt
P ′
l (z̃s)

[
QJ−1(x̃t)−QJ+1(x̃t)

]
− C̄Jl(t, s

′) , (B.23)

with the real quantity

z̃s(t, s
′) =

x̃2t − δ̃

γ̃
= 1 +

t

2q′2
= zs(s

′, t) (B.24)

and polynomial parts defined by

ĀJl(t, s
′) =

1

2

1∫

−1

dzt PJ(zt)

{
1

ptqt

P ′
l (z̃s)− P ′

l (z
′
s)

x̃t − zt
+

1± 1

2(s′ − a)
P ′
l (z

′
s)

}
,

B̄Jl(t, s
′) =

1

2

1∫

−1

dzt PJ(zt)

{
1

ptqt

x̃tP
′
l (z̃s)− ztP

′
l (z

′
s)

x̃t − zt
+

1∓ 1

2(s′ − a)
ztP

′
l (z

′
s)

}
,

C̄Jl(t, s
′) =

1

2

1∫

−1

dzt

[
PJ−1(zt)− PJ+1(zt)

]{ 1

ptqt

P ′
l (z̃s)− P ′

l (z
′
s)

x̃t − zt
+

1∓ 1

2(s′ − a)
P ′
l (z

′
s)

}

= ĀJ−1,l − ĀJ+1,l , (B.25)

the kernels G̃Jl and H̃Jl may be written in a recursive fashion

G̃Jl(t,W
′) = ḠJl(t,W

′)− ḠJ,l−1(t,−W ′) , ḠJ,−1 = 0 , ∀ J ≥ 0 ,

H̃Jl(t,W
′) = H̄Jl(t,W

′)− H̄J,l−1(t,−W ′) , H̄J,−1 = 0 , ∀ J ≥ 1 ,

ḠJl(t,W
′) =

η̃J
E′ +m

{
P ′
l+1(z̃s)

ptqt

[
−pt
qt
(W ′ +m) +mx̃t

]
QJ(x̃t) +

pt
qt
(W ′ +m)ĀJ,l+1 −mB̄J,l+1

}
,

H̄Jl(t,W
′) =

η̃J
E′ +m

√
J(J + 1)

2J + 1

{
P ′
l+1(z̃s)

ptqt

[
QJ−1(x̃t)−QJ+1(x̃t)

]
− C̄J,l+1

}
, (B.26)

keeping C̄J,l just for convenience. Note that since x̃t/(ptqt) and the squares p2t and x̃2t are always real,
ĀJl is real/imaginary for J even/odd and the other way around for B̄Jl and C̄Jl. Therefore, we can
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conclude that the functions ḠJl, H̄Jl and hence the kernels G̃Jl, H̃Jl are real for t > tπ − (M2
π/m)2,

cf. the discussion following (B.6). The kernels for all combinations (J ≥ 0, l ≤ 2) explicitly read

G̃J0(t,W
′) =

η̃J
E′ +m

{
1

ptqt

([
− pt
qt
(W ′ +m) +mx̃t

]
QJ(x̃t)−mδJ0

)
+
pt
qt

W ′ +m

s′ − a
δJ0 −

m

3

δJ1
s′ − a

}
,

H̃J0(t,W
′) =

η̃J
E′ +m

√
J(J + 1)

2J + 1

{
1

ptqt

[
QJ−1(x̃t)−QJ+1(x̃t)

]
− δJ1
s′ − a

}
,

G̃J1(t,W
′) = −G̃J0(t,−W ′) +

η̃J
E′ +m

{
3z̃s
ptqt

([
− pt
qt
(W ′ +m) +mx̃t

]
QJ(x̃t)−mδJ0

)

+
W ′ +m

γ̃

pt
qt

[
1

ptqt

{
δJ1 + 3x̃tδJ0

}
+

1

s′ − a

{2
5
δJ2 +

(
1− 3δ̃

)
δJ0

}]

− m

γ̃

[
1

ptqt

{2
5
δJ2 + x̃tδJ1 + δJ0

}
+

1

s′ − a

{ 6

35
δJ3 +

(3
5
− δ̃
)
δJ1

}]}

= ḠJ1(t,W
′)− G̃J0(t,−W ′) ,

H̃J1(t,W
′) = −H̃J0(t,−W ′) +

η̃J
E′ +m

√
J(J + 1)

2J + 1

{
3z̃s
ptqt

[
QJ−1(x̃t)−QJ+1(x̃t)

]

− 1

γ̃

[
1

ptqt

{
δJ2 + 3x̃tδJ1

}
+

1

s′ − a

{2
5
δJ3 + 3

(1
5
− δ̃
)
δJ1

}]}

= H̄J1(t,W
′)− H̃J0(t,−W ′) ,

G̃J2(t,W
′) = −ḠJ1(t,−W ′) +

η̃J
E′ +m

{
P ′
3(z̃s)

ptqt

([
− pt
qt
(W ′ +m) +mx̃t

]
QJ(x̃t)−mδJ0

)

+
W ′ +m

γ̃2
pt
qt

[
1

ptqt

{
3

7
δJ3 + x̃tδJ2 +

5

2

(3
5
+ x̃2t − 2δ̃

)
δJ1 +

15

2
x̃t

(1
3
+ x̃2t − 2δ̃

)
δJ0

}

+
1

s′ − a

{
4

21
δJ4 + 2

(3
7
− δ̃
)
δJ2 +

15

2

(1− γ̃2

5
− 2

3
δ̃ + δ̃2

)
δJ0

}]

− m

γ̃2

[
1

ptqt

{
4

21
δJ4 +

3

7
x̃tδJ3 +

(6
7
+ x̃2t − 2δ̃

)
δJ2 +

5

2

(3
5
+ x̃2t − 2δ̃

)(
x̃tδJ1 + δJ0

)}

+
1

s′ − a

{
20

231
δJ5 +

3

7

(10
9

− 2δ̃
)
δJ3 +

5

2

(3
7
− 6

5
δ̃ + δ̃2 − γ̃2

5

)
δJ1

}]}

= ḠJ2(t,W
′)− ḠJ1(t,−W ′) ,

H̃J2(t,W
′) = −H̄J1(t,−W ′) +

η̃J
E′ +m

√
J(J + 1)

2J + 1

{
P ′
3(z̃s)

ptqt

[
QJ−1(x̃t)−QJ+1(x̃t)

]

− 1

γ̃2

[
1

ptqt

{
3

7
δJ4 + x̃tδJ3 +

5

2

(3
7
+ x̃2t − 2δ̃

)
δJ2 +

15

2
x̃t

(1
5
+ x̃2t − 2δ̃

)
δJ1

}

+
1

s′ − a

{ 4

21
δJ5 + 2

(1
3
− δ̃
)
δJ3 +

3

2

(3
7
− 2δ̃ + 5δ̃2 − γ̃2

)
δJ1

}]}

= H̄J2(t,W
′)− H̄J1(t,−W ′) . (B.27)

The explicit formulae for the polynomial parts ĀJl, B̄Jl, and C̄J,l for (J ≤ 2, l ≤ 6) needed for
calculating these kernels and furthermore the additional kernels G̃Jl and H̃Jl for (J ≤ 2, 3 ≤ l ≤ 5)
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via (B.26) are given in Appendix B.4.31 As a check of our calculation we can reproduce the nucleon
pole terms (B.5) by (cf. (A.67))

ÑJ
+(t) = −f2G̃J0(t,−W ′ = m) ∀ J ≥ 0 , ÑJ

−(t) = −f2H̃J0(t,−W ′ = m) ∀ J ≥ 1 . (B.28)

The asymptotic behavior of the general kernel functions (B.21) can be deduced to be

for ptqt → 0 G̃Jl(t,W
′) ∼ H̃Jl(t,W

′) ∼ 1 ,

for q′ → 0 G̃Jl(t,W
′) ∼ H̃Jl(t,W

′) ∼ q′−2l , G̃Jl(t,−W ′) ∼ H̃Jl(t,−W ′) ∼ q′−2l−2 ,

for q′ → ∞ G̃Jl(t,W
′) ∼ H̃Jl(t,W

′) ∼ q′−2J . (B.29)

In particular, these kernels are finite for ptqt → 0 and their precise form in this limit may be worked
out in close analogy to the discussion of the pole terms in Appendix B.1 based on (B.26). Note that
both (B.28) and (B.29) obey the MacDowell symmetry relation (3.3), as they should.

B.3 t-channel exchange

We need the t-channel HDR terms (A.70) in the form

AI(s, t)
∣∣∣
t

s=s(t,zt)
=

1

π

∞∫

tπ

dt′ hI
t [t, t

′; zt] ImAI(s′, t′)
∣∣∣
s′=s′(t′,z′t)

, (B.30)

where the kernel matrix hI
t is given in (A.71), and the integrand can be written as a function of the

variables [t, t′; zt] by noting that

1

2q2
1

xt − zs

∣∣∣∣
[t,t′;zt]

=
1

t′ − t
,

ν

ν ′

∣∣∣∣
[t,t′;zt]

=
ptqt
p′tq

′
t

zt
z′t
, (B.31)

and that z′t and zt are related by (cf. (A.22))

z′t(t, t
′; zt) =

√
α̃z2t + β̃ , α̃(t, t′) =

p2t q
2
t

p′2t q
′2
t

,

β̃(t, t′) =
t′ − t

16p′2t q
′2
t

(t+ t′ − 2Σ + 4a) . (B.32)

If we expand the absorptive part of (B.30) into t-channel partial waves by using (A.75) and project
onto t-channel partial waves again via (B.9), we obtain the following PWDRs for the t-channel partial
waves

fJ(t)
∣∣∣
t
=

1

π

∞∫

tπ

dt′
∑

J ′

K̃JJ ′

(t, t′) Im fJ
′

(t′) , (B.33)

where the summation runs over even/odd values of J ′ for even/odd values of J , accordingly, and the
kernel matrix is defined by

K̃JJ ′

(t, t′) =

1∫

0

dzt T̃
J(t, zt)h

I
t [t, t

′; zt]T
J ′

(t′, z′t) . (B.34)

31Note that for |a| → ∞, of all polynomial parts only B̄0l does not vanish completely and hence f0
+ receives polynomial

contributions from the kernels G̃0l. These remaining contributions, however, are just those that cancel with the leading
terms of the S-wave pole terms (B.5), cf. the discussion following (B.8) as well as the explicit kernels (B.27).
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Calculating this kernel matrix shows that it can be written with three kernel functions as

K̃JJ ′

(t, t′) =

(
K̃1

JJ ′(t, t′) K̃2
JJ ′(t, t′)

0 K̃3
JJ ′(t, t′)

)
=

ζJJ ′

t′ − t

(
uJJ ′(t, t′) vJJ ′(t, t′)

0 wJJ ′(t, t′)

)
,

ζJJ ′(t, t′) = (2J ′ + 1)
(p′tq

′
t)
J ′−1

(ptqt)J−1
, (B.35)

where we have defined different angular kernels for even J and J ′

uJJ ′ =
ptq

′
t

qtp
′
t

1∫

0

dzt PJ(zt)PJ ′(z′t) , vJJ ′ =
m√

J ′(J ′ + 1)

pt
qtp

′
tq

′
t

1∫

0

dzt PJ(zt)
{
q2t z

2
t − q′2t z

′2
t

}P ′
J ′(z′t)

z′t
,

wJJ ′ =
1

2J + 1

√
J(J + 1)

J ′(J ′ + 1)

ptqt
p′tq

′
t

1∫

0

dzt

{
PJ−1(zt)− PJ+1(zt)

}
zt
P ′
J ′(z′t)

z′t
, (B.36)

and for odd J and J ′

uJJ ′ =
p2t
p′2t

1∫

0

dzt PJ(zt)zt
PJ ′(z′t)
z′t

, vJJ ′ =
m√

J ′(J ′ + 1)

{
1− p2t

p′2t

} 1∫

0

dzt PJ(zt)ztP
′
J ′(z′t) ,

wJJ ′ =
1

2J + 1

√
J(J + 1)

J ′(J ′ + 1)

1∫

0

dzt

{
PJ−1(zt)− PJ+1(zt)

}
P ′
J ′(z′t) . (B.37)

In this way, we recover the form of the t-channel part given in (3.7)

fJ+(t)
∣∣∣
t
=

1

π

∞∫

tπ

dt′
∑

J ′

{
K̃1

JJ ′(t, t′) Im fJ
′

+ (t′) + K̃2
JJ ′(t, t′) Im fJ

′

− (t′)
}

∀ J ≥ 0 ,

fJ−(t)
∣∣∣
t
=

1

π

∞∫

tπ

dt′
∑

J ′

K̃3
JJ ′(t, t′) Im fJ

′

− (t′) ∀ J ≥ 1 , (B.38)

and according to f0− ≡ 0 we set K̃3
0J ′ ≡ 0 ≡ K̃2

J0 .
From the projection integrals (B.36) and (B.37) together with the definitions (B.32) and

1− p2t
p′2t

=
t′ − t

4p′2t
, q2t z

2
t − q′2t z

′2
t =

t′ − t

4p′2t

{
4q2t z

2
t −

1

4
(t+ t′ − 2Σ + 4a)

}
, (B.39)

one can see that the off-diagonal term vJJ ′ is proportional to t′− t, as it should be. Note also that only
even powers of z′t and zt occur in the projection integrals. Therefore, the kernel functions K̃1

JJ ′ , K̃2
JJ ′ ,

and K̃3
JJ ′ are always real, since the prefactors contain only even powers of momenta. The integrals

can be performed with the help of [96]

Pl(z) =

l
2∑

λ=0

aevλlz
2λ , Pl(z) =

l−1
2∑

λ=0

aodλl z
2λ+1 , (B.40)

for even and odd values of l, respectively, where

aevλl =
(−1)λ+

l
2 (2λ+ l − 1)!

2l−1
(

l
2 − λ

)
!
(
λ+ l

2 − 1
)
!(2λ)!

, aodλl =
(−1)λ+

l−1
2 (2λ+ l)!

2l−1
(
l−1
2 − λ

)
!
(
λ+ l−1

2

)
!(2λ+ 1)!

, (B.41)
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which also follow from reordering the expansion

Pl(z) =
1

2l

⌊
l
2

⌋
∑

λ=0

(−1)λ(2l − 2λ)!

λ!(l − λ)!(l − 2λ)!
zl−2λ ,

⌊
l

2

⌋
=

{
l
2 for even l ,
l−1
2 for odd l .

(B.42)

In this way, the required non-vanishing integrals may be written for even J and J ′ as

1∫

0

dzt PJ (zt)PJ ′(z′t) =

J′

2∑

λ′=J
2

aevλ′J ′

λ′∑

µ=J
2

(
λ′

µ

)
α̃µβ̃λ

′−µãevJµ ,

1∫

0

dzt PJ(zt)
{
q2t z

2
t − q′2t z

′2
t

}P ′
J ′(z′t)

z′t
=

J′

2∑

λ′=max{J
2
,1}

2λ′aevλ′J ′

×
{
q2t

λ′−1∑

µ=max{J
2
−1,0}

(
λ′ − 1
µ

)
α̃µβ̃λ

′−1−µãevJ,µ+1 − q′2t

λ′∑

µ=J
2

(
λ′

µ

)
α̃µβ̃λ

′−µãevJµ

}
,

1∫

0

dzt

{
PJ−1(zt)− PJ+1(zt)

}
zt
P ′
J ′(z′t)

z′t
=

J′

2∑

λ′=max{J
2
,1}

2λ′aevλ′J ′

λ′−1∑

µ=max{J
2
−1,0}

(
λ′ − 1
µ

)
α̃µβ̃λ

′−1−µãodJ−1,µ+1

−
J′

2∑

λ′=J
2
+1

2λ′aevλ′J ′

λ′−1∑

µ=J
2

(
λ′ − 1
µ

)
α̃µβ̃λ

′−1−µãodJ+1,µ+1 , (B.43)

and for odd J and J ′ as

1∫

0

dzt PJ(zt)zt
PJ ′(z′t)
z′t

=

J′
−1
2∑

λ′=J−1
2

aodλ′J ′

λ′∑

µ=J−1
2

(
λ′

µ

)
α̃µβ̃λ

′−µãodJ,µ+1 ,

1∫

0

dzt PJ(zt)ztP
′
J ′(z′t) =

J′
−1
2∑

λ′=J−1
2

(2λ′ + 1)aodλ′J ′

λ′∑

µ=J−1
2

(
λ′

µ

)
α̃µβ̃λ

′−µãodJ,µ+1 ,

1∫

0

dzt

{
PJ−1(zt)− PJ+1(zt)

}
P ′
J ′(z′t) =

J′
−1
2∑

λ′=J−1
2

(2λ′ + 1)aodλ′J ′

λ′∑

µ=J−1
2

(
λ′

µ

)
α̃µβ̃λ

′−µãevJ−1,µ

−
J′

−1
2∑

λ′=J+1
2

(2λ′ + 1)aodλ′J ′

λ′∑

µ=J+1
2

(
λ′

µ

)
α̃µβ̃λ

′−µãevJ+1,µ , (B.44)
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with the definitions (for even and odd values of J , respectively)32

ãevJµ =

J
2∑

λ=0

aevλJ
2(µ+ λ) + 1

= 2J
(
µ+ J

2

)
!(2µ)!(

µ− J
2

)
!(2µ + J + 1)!

=
(2µ)!

(2µ − J)!!(2µ + 1 + J)!!

(
µ ≥ J

2

)
,

ãodJµ =

J−1
2∑

λ=0

aodλJ
2(µ + λ) + 1

= 2J
(
µ+ J−1

2

)
!(2µ − 1)!(

µ− J+1
2

)
!(2µ + J)!

=
(2µ − 1)!

(2µ − 1− J)!!(2µ + J)!!

(
µ ≥ J − 1

2

)
.

(B.45)

We can conclude that the following kernels vanish:

K̃JJ ′

(t, t′) = 0 ∀ J ′ < J , (B.46)

and by using the identities

(2J + 1)aevJ
2
,J
ãev
J, J

2

= 1 , JaevJ
2
,J
ãod
J−1, J

2

= 1 , for even J ,

(2J + 1)aodJ−1
2

,J
ãod
J, J+1

2

= 1 , JaodJ−1
2

,J
ãev
J−1, J−1

2

= 1 , for odd J , (B.47)

it follows that the non-vanishing kernels for J ′ = J take the form

K̃1
JJ(t, t

′) =
p2t
p′2t

1

t′ − t
=

1

t′ − t
− 1

t′ − tN
=
t

t′
1

t′ − t
− tN

t′
1

t′ − tN
∀ J ≥ 0 ,

K̃2
JJ(t, t

′) =

√
J

J + 1

m

4p′2t
=

√
J

J + 1

m

t′ − tN
∀ J ≥ 1 ,

K̃3
JJ(t, t

′) =
1

t′ − t
∀ J ≥ 1 , (B.48)

from which one can immediately read off the relation (valid for all J)

K̃2
JJ(t, t

′) = m

√
J

J + 1

{
K̃3

JJ(t, t
′)− K̃1

JJ(t, t
′)
}
. (B.49)

This together with

K̃1
02(t, t

′) =
5

16

p2t
p′2t

{
t+ t′ − 2Σ + 6a

}
, K̃2

02(t, t
′) =

5m

16
√
6

p2t
p′2t

{
4q2t − 3(t+ t′ − 2Σ + 4a)

}
,

K̃1
13(t, t

′) =
7

48

p2t
p′2t

{
t+ t′ − 2Σ + 10a

}
, K̃2

13(t, t
′) =

7m

64
√
3

1

p′2t

{
8p2t q

2
t + (t′ − t)(t+ t′ − 2Σ + 5a)

}
,

K̃3
13(t, t

′) =
7

8
√
6

{
t+ t′ − 2Σ + 5a

}
, (B.50)

completes the calculation of the t-channel kernels with (J ≤ 3, J ′ ≤ 3). Finally, from (B.43) and
(B.44) we may infer the asymptotic behavior of the non-vanishing kernels

for pt → 0 K̃1
JJ ′(t, t′) ∼ p2t , K̃2

JJ ′(t, t′) ∼ K̃3
JJ ′(t, t′) ∼ 1 ,

for qt → 0 K̃1
JJ ′(t, t′) ∼ K̃2

JJ ′(t, t′) ∼ K̃3
JJ ′(t, t′) ∼ 1 ,

for t→ ∞ K̃1
JJ ′(t, t′) ∼ K̃2

JJ ′(t, t′) ∼ tJ
′−J , K̃3

JJ ′(t, t′) ∼ tJ
′−J−1 ,

for p′t → 0 K̃1
JJ ′(t, t′) ∼ K̃2

JJ ′(t, t′) ∼ p′−2
t , K̃3

JJ ′(t, t′) ∼ 1 ,

for q′t → 0 K̃1
JJ ′(t, t′) ∼ K̃2

JJ ′(t, t′) ∼ K̃3
JJ ′(t, t′) ∼ 1 ,

for t′ → ∞ K̃1
JJ ′(t, t′) ∼ t′J

′−J−2 , K̃2
JJ ′(t, t′) ∼ K̃3

JJ ′(t, t′) ∼ t′J
′−J−1 . (B.51)

32These identities are similar to the Saalschütz formula (A.42) employed in [46]. Note that (−1)!! = 0!! = 1.
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Note that the kernel K̃2
02(t, t

′) exceptionally has better convergence properties

K̃2
02(t, t

′) ∼ p2t for pt → 0 , K̃2
02(t, t

′) ∼ 1 for t′ → ∞ . (B.52)

B.4 Higher kernel functions

The explicit form of the polynomial parts ĀJl, B̄Jl, and C̄J,l from (B.25) for (J ≤ 2, l ≤ 6) that are
needed in order to calculate the kernels G̃Jl and H̃Jl for (J ≤ 2, l ≤ 5) via (B.26) explicitly read

Ā01 =
1

s′ − a
, Ā02 =

3

γ̃

[
x̃t
ptqt

+
1

s′ − a

{
1

3
− δ̃

}]
, (B.53)

Ā03 =
15

2γ̃2

[
x̃t
ptqt

{
x̃2t +

1

3
− 2δ̃

}
+

1

s′ − a

{
1− γ̃2

5
− 2

3
δ̃ + δ̃2

}]
,

Ā04 =
35

2γ̃3

[
x̃t
ptqt

{
x̃4t + x̃2t

(
1

3
− 3δ̃

)
+

1

5
− 3

7
γ̃2 − δ̃ + 3δ̃2

}

+
1

s′ − a

{
1

7
− γ̃2

7

(
1− 3δ̃

)
− 3

5
δ̃ + δ̃2 − δ̃3

}]
,

Ā05 =
315

2γ̃4

[
x̃t
ptqt

{
x̃6t
4

+ x̃4t

(
1

12
− δ̃

)
+ x̃2t

(
1

20
− γ̃2

6
− δ̃

3
+

3

2
δ̃2
)
+

1

28
− γ̃2

3

(
1

6
− δ̃

)
− δ̃

5

+
δ̃2

2
− δ̃3

}
+

1

s′ − a

{
1

36
− γ̃2

6

(
1

5
− γ̃2

14
− 2

3
δ̃ + δ̃2

)
− δ̃

7
+

3

10
δ̃2 − δ̃3

3
+
δ̃4

4

}]
,

Ā06 =
3465

4γ̃5

[
x̃t
ptqt

{
x̃8t
10

+ x̃4t

(
1

50
− γ̃2

11
− δ̃

6
+ δ̃2

)
+ x̃2t

(
1

70
− γ̃2

11

(
1

3
− 3δ̃

)
− δ̃

10
+
δ̃2

3
− δ̃3

)

+
x̃6t
2

(
1

15
− δ̃

)
+

1

90
− γ̃2

11

(
1

5
− γ̃2

6
− δ̃ + 3δ̃2

)
− δ̃

14
+
δ̃2

5
− δ̃3

3
+
δ̃4

2

}

+
1

s′ − a

{
1

110
− γ̃2

11

(
1

7
− γ̃2

6

(
1

3
− δ̃

)
− 3

5
δ̃ + δ̃2 − δ̃3

)
− δ̃

18
+
δ̃2

7
− δ̃3

5
+
δ̃4

6
− δ̃5

10

}]
,

Ā11 = 0 , Ā12 =
1

ptqt

1

γ̃
, Ā13 =

1

ptqt

5

2γ̃2

{
x̃2t +

3

5
− 2δ̃

}
, (B.54)

Ā14 =
1

ptqt

35

2γ̃3

{
x̃4t
3

+ x̃2t

(
1

5
− δ̃

)
+

1− γ̃2

7
− 3

5
δ̃ + δ̃2

}
,

Ā15 =
1

ptqt

315

2γ̃4

{
x̃6t
12

+ x̃4t

(
1

20
− δ̃

3

)
+ x̃2t

(
1

28
− γ̃2
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− δ̃

5
+
δ̃2

2

)

+
1

36
− γ̃2

3

(
1

10
− δ̃

3

)
− δ̃

7
+

3

10
δ̃2 − δ̃3

3

}
,

Ā16 =
1

ptqt

3465

4γ̃5

{
x̃8t
30

+ x̃4t

(
1

70
− γ̃2

33
− δ̃

10
+
δ̃2

3

)
+ x̃2t

(
1

90
− γ̃2

11

(
1

5
− δ̃

)
− δ̃

14
+
δ̃2

5
− δ̃3

3

)

+
x̃6t
2

(
1
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1

110
− γ̃2

11

(
1

7
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18
+
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− δ̃3
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+
δ̃4

6

}
,
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Ā21 = 0 , Ā22 =
2

5γ̃

1

s′ − a
, Ā23 =

1

γ̃2

[
x̃t
ptqt

+
1

s′ − a

{
6

7
− 2δ̃

}]
, (B.55)

Ā24 =
7

γ̃3

[
x̃t
ptqt

{
x̃2t
3

+
2

7
− δ̃

}
+

1
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21
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− 6

7
δ̃ + δ̃2
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,
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[
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(
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14
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)
+

5

28
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7
δ̃ +

3

2
δ̃2
}

+
1
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{
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− γ̃2

(
1
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3

)
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7
δ̃ +

9
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,
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[
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{
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(
3

35
− δ̃

2
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14
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6
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, (B.56)

B̄03 =
1
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,
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)
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,
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+
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2

}
.

B.5 Subtracted kernel functions

Here, we give the modifications of the nucleon-pole-term projections and the kernel functions for the
t-channel projection, that are required by the subtractions performed in Sect. 4.3.

To start with, the n-times subtracted nucleon-pole-term projections may be written as

ÑJ
±
∣∣n-sub(t) = N̂J

±(t) + ∆N̂J
±
∣∣n-sub(t) ,

∆N̂J
+

∣∣2-sub(t) = − p2t
4π

(
g2

m
+ d+00 + d+01t− b+00

q2t
3

)
δJ0 +

m

12π

(
− g2

2m2
+ b−00 + b−01t− a−00

p2t
m2

)
δJ1

+
b+00
30π

δJ2

1-sub−→ − p2t
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(
g2

m
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)
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12π

(
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2m2
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)
δJ1 ,
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−
∣∣2-sub(t) =

√
2

12π

(
− g2

2m2
+ b−00 + b−01t

)
δJ1 +

b+00
30π

√
6

2m
δJ2 ,

1-sub−→
√
2

12π

(
− g2

2m2
+ b−00

)
δJ1 , (B.61)

where in analogy to the s-channel projection we have defined unsubtracted corrections (cf. (B.6))

∆N̂J
+

∣∣0-sub(t) = − g2

4π

m

3

δJ1
m2 − a

, ∆N̂J
−
∣∣0-sub(t) = − g2

4π

√
2

3

δJ1
m2 − a

, (B.62)

which are constant and non-zero only for J = 1, in order to split off all terms that are either constant
or contain subthreshold parameters. Note that for both one and two subtractions the full nucleon-pole-
term projections fulfill the threshold relations (3.63) for pt → 0, but no longer for qt → 0. However,
the subtraction-independent parts of the pole terms N̂J

± still fulfill the relations (3.63) for ptqt → 0.

The necessary update of the s-channel kernels G̃Jl(t,W
′) and H̃Jl(t,W

′) may be achieved by adding

∆ĀJl

∣∣2-sub(t, s′) =
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δJ0 ,
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∆B̄Jl
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δJ1 , (B.63)

respectively, to ĀJl, B̄Jl, and C̄Jl at the pertinent places in (B.26), leading to corresponding ∆G̃Jl

and ∆H̃Jl. Note that also in both the once- and twice-subtracted case ∆C̄Jl = ∆ĀJ−1,l −∆ĀJ+1,l is
still valid (for J ≥ 1, here actually ∆C̄Jl = ∆ĀJ−1,l).

The additional contributions to the t-channel kernels K̃JJ ′

(t, t′) amount, for even J and J ′, to
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while for odd J and J ′ one finds
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. (B.65)

Furthermore, ∆K̃JJ ′

= 0 for J > 2 or J ′ < J , the latter being in agreement with (B.46). In all cases
only even powers of z′t and the primed momenta occur, and hence the additional kernel terms are
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always real. Here, we refrain from explicitly expanding the Legendre polynomials using (B.40) as in
Appendix B.3, but only give one example to demonstrate this point (for even J and J ′)

[
∂t(z

′
tP

′
J ′(z′t))

]
(0,0)

= 2
[
∂tz

′2
t

]
(0,0)

J′

2∑

λ=1

aevλJ ′λ2
[
z′2t
]λ−1

(0,0)
. (B.66)

For later convenience, we explicitly state all those subtracted kernels with 0 ≤ J ′ ≤ 3 that differ from
their unsubtracted form
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still obeying the threshold-behavior relation (3.62). Note that at the level of two subtractions all these
kernels are independent of a (which is, however, not true for only one subtraction and J ≥ 3 or without
subtracting), and that the exceptionally safe behavior of K̃2

02(t, t
′) at tN is preserved (cf. (B.52)):

K̃2
02

∣∣n-sub(t→ tN , t
′) = O(p2t ) ∀ n ≥ 0 . (B.68)

C Ranges of convergence

In this Appendix, we will analyze both the convergence of the partial-wave expansion of the imaginary
parts inside the integrals and the convergence of the partial-wave projection of the full HDR equations.
For the rest of this section we may work as if no subtractions were necessary.

C.1 Boundaries of the double spectral regions

The following analysis is performed in the spirit of [19, 29, 31].33 The basic assumption is that the
T -matrix element (and hence the scattering amplitudes {A(s, t), B(s, t)} ∝ T (s, t)/(16π)) fulfills Man-
delstam analyticity [99], i.e. that it can be written in terms of double spectral density functions ρsu,

33Note that the authors of [19] corrected their discussion of the boundaries of the double spectral regions in [98].
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(I) (II) (III) (IV)

Figure 14: Box graphs constraining the boundaries of the double spectral regions. Solid lines denote
nucleons and dashed lines denote pions.

ρtu, and ρst according to34

T (s, t) =
1

π2

∫∫
ds′du′

ρsu(s
′, u′)

(s′ − s)(u′ − u)
+

1

π2

∫∫
dt′du′

ρtu(t
′, u′)

(t′ − t)(u′ − u)
+

1

π2

∫∫
ds′dt′

ρst(s
′, t′)

(s′ − s)(t′ − t)
.

(C.1)
The integration ranges are determined by those regions in the Mandelstam plane where the corre-
sponding double spectral densities have support. The boundaries of these so-called double spectral
regions will be the central objects of the following discussion.

The three double spectral densities can be derived by studying the consequences of unitarity in
the 2-intermediate-particle approximation. We consider the corresponding lowest-lying intermediate
states as depicted in Fig. 14 (as unitarity diagrams, i.e. with on-shell intermediate particles), where
the inelastic (referring to the intermediate state of the s-channel process) diagram (I) and the elastic
diagram (II) yield the boundary of the support of ρst (from which, due to s ↔ u crossing symmetry,
the result for ρut directly follows), while (III) and (IV) are relevant for calculating the boundary of
the support of ρsu. This leads to boundary functions (cf. [29])

bI(s, t) =
(
t− 4M2

π

)
λ
(
s,m2, 4M2

π

)
− 16M4

π

(
s+ 3Σ−

)
,

bII(s, t) =
(
t− 16M2

π

)
λs − 64M4

πs (C.2)

for the boundary of ρst and thus bI(u, t) and bII(u, t) for the boundary of ρut, as well as

bIII(s, u) = λuλ
(
s,m2, 4M2

π

)
− 16M2

π

[
m2su− Σ2

−
(
m2 − t(s, u)

)]
,

bIV(s, u) = λsλ
(
u,m2, 4M2

π

)
− 16M2

π

[
m2su− Σ2

−
(
m2 − t(s, u)

)]
(C.3)

for the boundary of ρsu, where we only need to consider bIII(s, u) = bIV(u, s) due to s↔ u symmetry.
The whole support of all three double spectral densities is then given by the union of the regions
allowed by the non-trivial constraints that the corresponding boundary functions be non-negative.
Furthermore, trivial constraints arise from the lower kinematical bounds of the corresponding physical
regions that are given by the asymptotes of the boundary functions in question, e.g. for the inelastic
diagram (I) we find the asymptotes s = (m+2Mπ)

2 and t = (2Mπ)
2 = tπ, and for the elastic diagram

(II) we obtain s = (m+Mπ)
2 = s+ and t = (4Mπ)

2. Therefore, by defining the following abbreviations
for the solutions of the implicit equations

bI/II(s, t)
!
= 0 ⇒ t = TI/II(s) , s = SI/II(t) , (C.4)

34Mandelstam analyticity can at any rate be justified in the framework of perturbation theory [99–101]. While for ππ
scattering the validity of the Mandelstam representation can even be shown rigorously in a finite region [102, 103], for
πN scattering (involving unequal masses and spin) at least the uniqueness of amplitudes satisfying this representation
is ensured by the MacDowell symmetry [104,105].
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Figure 15: Double spectral regions for πN scattering (shaded) and boundaries of ρst and ρut reflected
in the corresponding scattering angle (dot-dashed).

the boundary of the support of e.g. ρst is described by

Tst(s) = min{TI(s), TII(s)} =

{
TII(s) for s+ < s < (m+ 2Mπ)

2 ,

min{TI(s), TII(s)} for (m+ 2Mπ)
2 < s ,

(C.5)

with the functions

TI(s) =
4M2

π

(
s−m2 − 2M2

π

)2

λ
(
s,m2, 4M2

π

) > 4M2
π ∀ s > (m+ 2Mπ)

2 ,

TII(s) =
16M2

π

(
s− Σ−

)2

λs
> 16M2

π ∀ s > s+ , (C.6)

again limited by the physical constraints, such that by definition Tst(s) > 4M2
π for s > s+. The

boundaries of all three double spectral regions are shown in Fig. 15. The asymptotes of ρst are s = s+
and t = tπ and hence those of ρut are u = s+ and t = tπ, while the symmetric asymptotes of ρsu are
s = s+ and u = s+.

C.2 Lehmann ellipse constraints

The boundaries of the double spectral regions limit the range of validity of the HDRs in two ways:

1. The partial-wave expansions of the imaginary parts inside the HDR integrals (internal/primed
kinematics) in the unphysical regions for both s- and t-channel partial waves converge only for
CMS scattering angle cosines z′ within the corresponding large Lehmann ellipses [106]. These
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ellipses are the largest ellipses in the complex z′ plane, centered at the origin with foci at z′ = ±1,
that do not reach into any double spectral region.

2. For a given value of the parameter a, the hyperbolae (s − a)(u − a) = b with asymptotes s = a
and u = a must not enter any double spectral region for all values of the parameter b that
are necessary for the partial-wave projections of the full HDR equations (external/unprimed
kinematics) in given kinematical ranges. Trivial geometrical constraints on a arise already from
the asymptotes of the double spectral regions.

In this section we will show how the (large) Lehmann ellipse constraint can be translated for a given
a into a constraint on b, each for both the expansions in s- and t-channel partial waves. For any
allowed fixed a, the allowed values of b are those fulfilling both of the above requirements, and the
(limited) freedom in the choice of a in the construction of the HDRs can be used in order to optimize the
convergence properties of the PWHDRs. In the two subsequent sections we will investigate numerically
how these limits on b (for given a) yield the ranges of convergence of the full RS system via the
restrictions that are necessary for both the projections onto s- and t-channel partial waves to converge.

For the partial-wave expansion of the s-channel contributions, the Lehmann ellipse constraint
states that the expansion converges for angles z′s(s

′, t′) = 1 + 2s′t′/λs′ (cf. (2.51)) inside the ellipse

(Re z′s)
2

A2
s

+
(Im z′s)

2

B2
s

= 1 , (C.7)

with foci at z′s = ±1 (corresponding to the physical constraint −1 ≤ z′s ≤ 1), i.e. semimajor and
semiminor axis As and Bs are related by

A2
s −B2

s = 1 . (C.8)

Since for given t′ the angle z′s is always real in the integration range s′ > s+, the maximal value of z′s
for given s′ not entering the support of ρst follows from the corresponding maximally allowed value of
t′ (according to (C.5) for the internal (primed) variables) and thus reads

zmax
s′ (s′) = 1 +

2s′

λs′
Tst(s

′) = As ∀ s′ > s+ . (C.9)

From the geometrical condition −As ≤ z′s ≤ As then follows

− zmax
s′ ≤ z′s ≤ zmax

s′ ∀ s′ > s+ , (C.10)

and the lower bound due to this reflection in z′s is actually stronger than the restrictions imposed by
ρsu as shown by the dot-dashed line in Fig. 15, where the z′s-reflected boundary of the support of ρst
for ν > 0 is given by

u
(
s, t
(
s,−zs

(
s, t = Tst(s)

)))
=

Σ2
−
s

+ Tst(s) , (C.11)

with the asymptote u = 4M2
π for s → ∞ due to Tst(s). Furthermore, due to s ↔ u symmetry ρut

yields exactly the same constraints as ρst (including the z′u-reflected boundary for ν < 0), and hence
we only need to consider the latter.35 The possible values of t′ for given s′ are then restricted by
(cf. [29])

− λs′

s′
− Tst(s

′) ≤ t′ ≤ Tst(s
′) ∀ s′ > s+ . (C.12)

35Note that both the s- and u-channel physical regions fit well in between ρst, ρut, and their reflected boundaries.
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Via the linear relation (2.43) for the internal kinematics this range for t′ can be translated into a range
of allowed values of b(s′, t′; a) for given a according to (cf. (C.11))

b−s (s
′, a) ≤ b ≤ b+s (s

′, a) ∀ s′ > s+ > a ,

b−s (s
′, a) = (s′ − a)

(
Σ− s′ − Tst(s

′)− a
)
,

b+s (s
′, a) = (s′ − a)

(
Σ− s′ +

λs′

s′
+ Tst(s

′)− a
)
= (s′ − a)

{
Σ2
−
s′

+ Tst(s
′)− a

}
, (C.13)

where we have used that from the asymptotes s = s+ and u = s+ of the double spectral regions it
is geometrically clear from Fig. 15 that the allowed values of the hyperbola’s asymptotic parameter
a are trivially limited to a < s+ (independent of b), and hence we have s′ > a for all s′ > s+. By
invoking the asymptotes s = tπ and u = tπ of the z′-reflected boundaries of ρst and ρut (cf. (C.11))
we can deduce that the allowed range of a is actually geometrically limited by a < tπ, which is the
reason why the “fixed-t limit” |a| → ∞ actually reduces to a→ −∞. Now, we may define the highest
lower and the lowest upper bound

b̃−s (a) = max
s′>s+

b−s (s
′, a) , b̃+s (a) = min

s′>s+
b+s (s

′, a) , (C.14)

as the maximum/minimum value of b
−/+
s (s′, a) within the integration range s′ > s+, which then finally

determines the allowed values of b for given a by

b̃−s (a) ≤ b ≤ b̃+s (a) ∀ s′ > s+ > a , (C.15)

for the s-channel parts of the HDRs.
The Lehmann ellipse constraint for the partial-wave expansion of the t-channel contributions limits

the convergence of the expansion to angles z′t(s
′, t′) = mν ′/(p′tq

′
t) (cf. (2.51)) inside an ellipse similar

to (C.7) centered at the origin with foci at z′t = ±1

(Re z′t)
2

A2
t

+
(Im z′t)

2

B2
t

= 1 , A2
t −B2

t = 1 . (C.16)

The argument for the t-channel contributions is more intricate, since inside the integration range
t′ > tπ the angle z′t becomes purely imaginary for tπ < t′ < tN , and hence no relations similar
to (C.10) are possible. However, as the relation between z′t and b is non-linear anyway (cf. (2.52))

z′2t =
(t′ − Σ+ 2a)2 − 4b(s′, t′; a)

16p′2t q
′2
t

, (C.17)

where all squares are real but not necessarily positive, we are interested in the resulting Lehmann
ellipse constraint for z′2t . By squaring equation (C.16) for general complex z′t we arrive at

(
Re {z′2t } − 1

2

)2

Ã2
t

+

(
Im {z′2t }

)2

B̃2
t

= 1 , (C.18)

which corresponds to an ellipse in the complex z′2t plane shifted to the right by (A2
t − B2

t )/2 = 1/2.
Hence, it is centered at (1/2, 0) with the semimajor and semiminor axes given by

Ãt =
A2

t +B2
t

2
= A2

t −
1

2
, B̃t = AtBt = At

√
A2

t − 1 , (C.19)
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such that the foci are at 1/2 ∓
√
Ã2

t − B̃2
t = 1/2 ∓ 1/2 (corresponding to the physical constraint 0 ≤

z′2t ≤ 1). Since for t′ > tπ we have z′2t = Re {z′2t }, the geometrical condition 1/2− Ãt ≤ z′2t ≤ 1/2+ Ãt

leads to the analog of (C.10)
1−A2

t = −B2
t ≤ z′2t ≤ A2

t , (C.20)

where it is important to note that on the right-hand side the relation between z′t and At is not fixed
due to the squares, while the reflection bound on the left-hand side is again more restrictive than the
corresponding bound due to ρsu, and hence we only have to look at the boundaries of the support
of ρst. For the following it turns out to be advantageous to rewrite the boundary functions bI,II(s, t)
of (C.2) in terms of (ν, t), since the quantity ν(zt, t) = ptqtzt/m is always real

bI(ν, t) =
(
t− 4M2

π

){1
4

(
t− 4mν + 6M2

π

)2 − 16m2M2
π

}
+ 8M4

π

{
t− 4mν − Σ− 6Σ−

}
!
= 0 ,

bII(ν, t) =
(
t− 16M2

π

){1
4

(
t− 4mν

)2 − 4m2M2
π

}
+ 32M4

π

{
t− 4mν − Σ

}
!
= 0 . (C.21)

Solving these implicit quadratic equations for ν(t) yields the physical solutions (cf. [29])

νI(t) =

(
t− 2M2

π

)(
t+ 4M2

π

)
+ 8Mπ

√
t
√(

t− 4M2
π

)
m2 +M4

π

4m
(
t− 4M2

π

) > 0 ∀ t > 4M2
π = tπ ,

νII(t) =

(
t− 8Mπ

)2
+ 4Mπ

√
t
√(

t− 16M2
π

)
m2 + 16M4

π

4m
(
t− 16M2

π

) > 0 ∀ t > 16M2
π = 4tπ , (C.22)

again limited by the physical constraints, where each sign of the root is fixed by zt(ν, t) = mν/(ptqt) ∝
+ν and hence zmax

t = +mνmax/(ptqt) in the physical t-channel region t > 4m2 = tN . Defining the
(positive) combined upper bound on ν according to

Nst(t) = min{νI(t), νII(t)} =

{
νI(t) for tπ < t < 4tπ ,

min{νI(t), νII(t)} for 4tπ < t ,
(C.23)

and resorting to the geometrical constraints of the original t-channel Lehmann ellipse (C.16) for z′t,
the maximally allowed value of the real angle z′t = Re z′t for given t

′ > tN not entering the support of
ρst is given by

zmax
t′ (t′) =

m

p′tq
′
t

Nst(t
′) = At ∀ t′ > tN , (C.24)

and thus (C.20) in this case leads to

1− m2

p′2t q
′2
t

Nst(t
′)2 ≤ z′2t ≤ m2

p′2t q
′2
t

Nst(t
′)2 ∀ t′ > tN . (C.25)

In contrast, for tπ < t′ < tN we have p′t = ip′− with real p′−. Accordingly, for the purely imaginary
angle z′t = i Im z′t it follows from (C.16) that

∣∣Im z′t(t
′)
∣∣ =

∣∣∣∣−
mν ′

p′−q
′
t

∣∣∣∣ ≤
m

p′−q
′
t

Nst(t
′) = Bt ⇒ B2

t = − m2

p′2t q
′2
t

Nst(t
′)2 ∀ tπ < t′ < tN , (C.26)

which plugged into (C.20) yields

m2

p′2t q
′2
t

Nst(t
′)2 ≤ z′2t ≤ 1− m2

p′2t q
′2
t

Nst(t
′)2 ∀ tπ < t′ < tN . (C.27)
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However, from both (C.25) with p′2t > 0 for all t′ > tN and (C.27) with p′2t < 0 for all tπ < t′ < tN we
arrive at the same constraints on ν ′2 for given t′ > tπ (cf. [29])

p′2t q
′2
t

m2
−Nst(t

′)2 ≤ ν ′2 ≤ Nst(t
′)2 ∀ t′ > tπ . (C.28)

By virtue of the linear relation (cf. (2.42))

16m2ν ′2 = (t′ − Σ+ 2a)2 − 4b , (C.29)

this range for ν ′2 can then be translated into a range for b(ν ′2, t′; a) according to

b−t (t
′, a) ≤ b ≤ b+t (t

′, a) ∀ t′ > tπ > a ,

b−t (t
′, a) =

1

4
(t′ −Σ+ 2a)2 − 4m2Nst(t

′)2 ,

b+t (t
′, a) =

1

4
(t′ −Σ+ 2a)2 − 4p′2t q

′2
t + 4m2Nst(t

′)2 = (t′ − Σ)a+ a2 +Σ2
− + 4m2Nst(t

′)2 , (C.30)

where we have included the geometrical constraint on a as discussed below equation (C.13). Defining
again the highest lower and the lowest upper bound

b̃−t (a) = max
t′>tπ

b−t (t
′, a) , b̃+t (a) = min

t′>tπ
b+t (t

′, a) (C.31)

as the maximum/minimum value of b
−/+
t (s′, a) within the integration range t′ > tπ, we can finally

give the range of allowed values of b for given a by

b̃−t (a) ≤ b ≤ b̃+t (a) ∀ t′ > tπ > a , (C.32)

for the t-channel parts of the HDRs.

C.3 s-channel partial-wave projection

As mentioned before, it turns out that the constraints due to ρut and ρsu are equal to or weaker
than the restrictions due to ρst. Therefore, we only need to consider the corresponding constraints
for the s-channel partial-wave projection of both the s-channel partial-wave expanded and the t-
channel partial-wave expanded HDR parts. However, the strategy to find the optimal value of a and
the corresponding range of convergence in s is the same in both cases: from the Lehmann ellipse
constraint it follows that all allowed values of b must obey36

b̃−s,t(a) ≤ b ≤ b̃+s,t(a) , (C.33)

for all s′ > s+ and t′ > tπ, i.e. within the corresponding integration ranges, respectively. The limits
−1 ≤ zs ≤ 1 of the scattering angle for the physical s-channel reaction translate into

− 4q2 = −λs
s

≤ t ≤ 0 ∀ s > s+ , (C.34)

and hence for given a < s+ < s the bounds on b due to the s-channel partial-wave projection are given
by (cf. (C.13))

bmin
s (s, a) ≤ b ≤ bmax

s (s, a) ∀ s > s+ > a , (C.35)

bmin
s (s, a) = (s− a)(Σ − s− a) , bmax

s (s, a) = (s− a)
(
Σ− s+

λs
s

− a
)
= (s − a)

{
Σ2
−
s

− a

}
.

36Note that the lower bounds coincide: b̃−s (a) = b̃−t (a) for all a < s+.
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The maximally allowed value of s for given a, smax
s,t (a), is then the largest value of s such that for

given a both bmin
s (s, a) and bmax

s (s, a) lie within the ranges
[
b̃−s,t(a), b̃

+
s,t(a)

]
, respectively. Equating

the boundary values of b from both the s- and t-channel partial-wave expansions and the s-channel
partial-wave projection yields

bmin
s (s, a)

!
= b̃−s,t(a) ⇒ s = s−s,t(a) ,

bmax
s (s, a)

!
= b̃+s,t(a) ⇒ s = s+s,t(a) , (C.36)

where s−s,t and s
+
s,t denote the corresponding maximal solutions for given a, leads to two equations for

the two wanted unknowns s̃max
s,t and ãss,t defined by

s̃max
s,t = max

a<s+
smax
s,t (a) = smax

s,t (ãss,t) . (C.37)

Explicitly, they follow from equating the maximal solutions

s−s,t(a)
!
= s+s,t(a) ⇒ a = ãss,t , s−s,t(ã

s
s,t) = s+s,t(ã

s
s,t) = s̃max

s,t ,

s±s,t(a) = max
{
s
±(−)
s,t (a), s

±(+)
s,t (a)

}
,

s
−(±)
s,t (a) =

Σ

2
±

√(
Σ

2
− a

)2

− b̃−s,t(a) ,

s
+(±)
s,t (a) =

1

2a

{[
a2 +Σ2

− − b̃+s,t(a)
]
±
√[

a2 +Σ2
− − b̃+s,t(a)

]2
− 4a2Σ2

−

}
, (C.38)

where for s > s+ > Σ/2 we have s−s,t = s
−(+)
s,t and for in addition e.g. a < 0 we have s+s,t = s

+(−)
s,t . The

maximum value of the two other (i.e. minimal) solutions for ãs,t then yields the highest lower bound
on s and thus we can write

s̃min
s,t = max

{
s+, s

−(−)
s,t (ãss,t), s

+(+)
s,t (ãss,t)

}
for s > s+ and a < 0 . (C.39)

For the s-channel parts, solving the equations numerically for all allowed a < s+ leads to the fol-
lowing optimal value of a and corresponding range of convergence in s > s+ = 59.64M2

π = (1.08GeV)2

ãss = −128.30M2
π , s+ < s < s̃max

s = 106.09M2
π , b̃−s (ã

s
s) = 26860M4

π , b̃+s (ã
s
s) = 34388M4

π ,
(C.40)

in agreement with the unpublished Appendix E of [21].37

For the t-channel parts, this procedure results in

ãst = −23.19M2
π , s+ < s < s̃max

t = 97.30M2
π , b̃−t (ã

s
t ) = 2202M4

π , b̃+t (ã
s
t ) = 5212M4

π . (C.41)

In conclusion, the s-channel constraints are weaker than the t-channel ones, which can also be
deduced from Fig. 16, where the situation for ãst = −23.19M2

π is shown: for this a the range of b
limited by b̃−t (ã

s
t ) and b̃+t (ã

s
t ) for the t-channel partial-wave expansion also lies within the allowed

range of b for the s-channel partial-wave expansion, and hence for the interval of s given in (C.41)
this range of b covers the interval

[
bmin
s (s, ãst ), b

max
s (s, ãst )

]
that is needed for the s-channel partial-wave

projection. By construction, the resulting family of hyperbolae does cross neither any double spectral

37Appendix E of [21] deals with finding the optimal values for the s-channel partial-wave projection of the s-channel
partial-wave expanded absorptive parts of the HDRs only and follows a similar scheme. The quoted results are s̃max

s &

105M2
π for ãs

s ≈ −117M2
π .
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Figure 16: Allowed ranges of b for s-channel partial-wave projection with a = ãst = −23.19M2
π for

s-channel (left) and t-channel (right) partial-wave expansion. Horizontal lines correspond to b̃−t (a) =
2202M4

π (solid) and b̃+t (a) = 5212M4
π (dashed).

region nor their z′-reflected boundaries as depicted in Fig. 18(left), and thus (C.41) corresponding to√
s̃max =

√
97.30Mπ = 1.38GeV constitutes the result for the s-channel partial-wave projection, in

agreement with [29].38

C.4 t-channel partial-wave projection

The relation between the range of b permitted by the Lehmann ellipse constraint (C.33) and the
corresponding range of convergence in t for the projection of the HDR equations onto t-channel partial
waves for given a is most easily established on the basis of the squared t-channel scattering angle z2t ,
which must cover the range

0 ≤ z2t (t, a, b) =
(t− Σ+ 2a)2 − 4b

16p2t q
2
t

=
(t− Σ+ 2a)2 − 4b

(t− tπ)(t− tN )
≤ 1 (C.42)

for both the s-channel and t-channel partial-wave expanded parts, since (as discussed after the t-
channel partial-wave projection formulae (3.6)) the integrands are always functions of the real square
z2t even between the thresholds tπ and tN . Furthermore, 0 ≤ z2t ≤ 1 is not only a necessary condition
for 0 ≤ zt ≤ 1 but also equivalent to −1 ≤ zt ≤ 1, which in turn is already sufficient to perform the
partial-wave projections in our case (cf. the discussion in Appendix B). Therefore, the range (C.42)
of z2t constitutes the necessary and sufficient condition not only for the physical region t > tN , but
for all kinematical regions. Obviously, for tπ < t < tN and given a, z2t can only be non-negative for b
non-negative and large enough. Translating (C.42) into ranges for b while taking care of the signs of
p2t and q2t in the different kinematical regions yields (cf. (C.30))

bmin
t (t, a) ≤ b ≤ bmax

t (t, a) ∀ tπ < t < tN , (C.43)

bmax
t (t, a) ≤ b ≤ bmin

t (t, a) ∀ t > tN (or t < tπ) ,

bmin
t (t, a) =

1

4
(t− Σ+ 2a)2 ≥ 0 , bmax

t (t, a) =
1

4
(t− Σ+ 2a)2 − 4p2t q

2
t = (t− Σ)a+ a2 +Σ2

− ,

38As combined result for both s- and t-channel contributions, the numbers s̃max = 97M2
π for ãs = −23M2

π are quoted
in [29] without further explanation and giving only a vague reference for these numerical values, which is most probably
meant to be [107]. However, roughly the same numbers are also given more recently in [25].
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Figure 17: Ranges of convergence in t for t-channel partial-wave projection from full coverage (shaded
area) of the physical band 0 ≤ z2t ≤ 1 for a = ãst = −23.19M2

π (left) and a = ãts,t = −2.71M2
π (right).

Vertical lines indicate thresholds tπ and tN .

where the superscripts min/max refer to both the (at least partially) unphysical kinematical range
t > tπ needed in our RS system as well as the corresponding min/max values 0/1 of z2t . Solving these
equations for t yields (cf. t(±)(ν = 0; a, b) of (2.42))

t
(±)
0 (a, bmin

t ) = Σ− 2a± 2
√
bmin
t , t1(a, b

max
t ) = Σ− a+

1

a

[
bmax
t − Σ2

−
]
, (C.44)

and the range of convergence in t for given a is the kinematical range in which all values between
bmin
t (t, a) and bmax

t (t, a) are covered by both intervals [b̃−s,t(a), b̃
+
s,t(a)]. Between the thresholds (i.e. for

tπ < t < tN ) this amounts to the conditions b̃−s,t(a) ≤ bmin
t (t, a) and bmax

t (t, a) ≤ b̃+s,t(a), while below or

above the thresholds (i.e. for t < tπ or tN < t) we have b̃−s,t(a) ≤ bmax
t (t, a) and bmin

t (t, a) ≤ b̃+s,t(a).
39

Equivalently, we can demand that for given a the band 0 ≤ z2t (t, a, b) ≤ 1 must be fully covered by the
area between z2t (t, a, b̃

−
s,t(a)) and z

2
t (t, a, b̃

+
s,t(a)) in order to determine the range of validity in t. The

situation that results from using the set (C.41) of optimal parameters for the s-channel partial-wave
projection derived in the previous section is shown in Fig. 17(left): the t-channel projection is then
valid for −5.63M2

π < t < 44.92M2
π (denoted by the shaded area of coverage), and the reason for this

rather low upper bound on t is that the curve for b̃−t = 2202M4
π changes sign between the thresholds

and thus enters the critical band 0 ≤ z2t ≤ 1, which is hence no longer fully covered by the allowed area.
Indeed, the range of convergence can be significantly improved if z2t (t, a, b̃

−
s,t(a)) ≤ 0 (and of course

also z2t (t, a, b̃
+
s,t(a)) ≥ 1) for all t between the thresholds. From (C.42) it is clear that for t ∈ (tπ, tN )

we have z2t (t, a, b) ≤ 0 if and only if b ≤ (t − Σ + 2a)2/4, such that the curves for the lower limits
b̃−s,t(a) of b will be tangent to the zero axis provided that b̃−s,t(a) = 0. Solving this numerically yields

b̃−s (a) = b̃−t (a)
!
= 0 ⇒ a = ãts,t = −2.71M2

π , (C.45)

which is unambiguous since it turns out that b̃−s,t(a) > 0 for a < ãts,t as well as b̃−s,t(a) < 0 for
ãts,t < a < s+ (where we have used the numerical equality of the lower bounds for both s- and t-

channel partial-wave expansion). Furthermore, the curves for b̃+s,t(a) start to enter the critical band
due to change of sign at tN for a > 2.58M2

π and a > 9.17M2
π , respectively (however, the geometrical

39Accordingly, at the thresholds the respective min/max values are identical: bmin
t (tπ, a) = bmax

t (tπ, a) =
(

a−Σ−

)2 ≥ 0

and bmin
t (tN , a) = bmax

t (tN , a) =
(

a+ Σ−

)2 ≥ 0.
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Figure 18: Double spectral regions and limiting hyperbolae for s- and t-channel partial-wave projection.
Left: for a = ãst = −23.19M2

π with b̃−t (a) = 2202M4
π (solid) and b̃+t (a) = 5212M4

π (dashed). Right:
for a = ãts,t = −2.71M2

π with b̃−s,t(a) = 0 (solid) and b̃+s (a) = 2897M4
π (dashed).

constraint a < tπ is partially tighter anyway). Thus, ãts,t is the smallest value of a such that the
critical band is fully covered between the thresholds, which is shown in Fig. 17(right). From this
figure and equation (C.44) it is clear that in this case we can deduce the corresponding upper and

lower bounds tmin
s,t (a) and tmax

s,t (a) on t by the intercepts t
(±)
0 (a, b̃+s,t(a)) of z

2
t (t, a, b̃

+
s,t(a)) with the zero

axis below and above the thresholds, respectively. Since moreover both tmax
s,t (a) = t

(+)
0 (a, b̃+s,t(a)) are

strictly decreasing in the allowed ranges of a, the minimal allowed value a = ãts,t is also the optimal

one yielding t̃min
s,t = t

(−)
0 (ãts,t, b̃

+
s,t(ã

t
s,t)) and t̃

max
s,t = t

(+)
0 (ãts,t, b̃

+
s,t(ã

t
s,t)). This procedure results in

b̃+s (ã
t
s,t) = 2897M4

π ⇒ −9.84M2
π ≤ t ≤ 205.45M2

π ,

b̃+t (ã
t
s,t) = 3509M4

π ⇒ −20.67M2
π ≤ t ≤ 216.28M2

π , (C.46)

where the s-channel Lehmann ellipse constraint proves slightly more restrictive, and thus the final
result for the t-channel partial-wave projection reads

ãts,t = −2.71M2
π , tπ < t < t̃max

s = 205.45M2
π , b̃−s,t(ã

t
s,t) = 0 , b̃+s (ã

t
s,t) = 2897M4

π , (C.47)

which corresponds to
√
t̃max =

√
205.45Mπ = 2.00GeV. Again, ascertaining that the resulting family

of hyperbolae does enter neither any double spectral region nor their z′-reflected boundaries, which is
shown in Fig. 18(right), completes the derivation of the final result (C.47) for the t-channel partial-
wave projection. It is interesting to note that the domain of validity in t is much bigger as the one
in s, which is reflected by the possibility to use only the positive half 0 ≤ zt ≤ 1 of the range of
the scattering angle due to Bose symmetry in the t-channel; in particular the range of convergence
connects the physical regions for the s- and u-channel reactions, where t ≤ 0, with the t-channel
physical region t ≥ tN .

The complicated interplay between a, b̃±s,t(a), and z
2
t (t, a, b) in the different kinematical regions is

the reason why it is not possible to treat the t-channel projection in analogy to the s-channel projection

96



in the previous section: equating again the corresponding boundary values of b from both the s- and t-
channel partial-wave expansions and the t-channel partial-wave projection, and subsequently equating
the corresponding maximal solutions in order to obtain t̃max

s,t as the maximal upper limit on t for t > tN
leads to entering or even crossing the critical band between the thresholds.

D Asymptotic regions and Regge theory

The asymptotic s- and t-channel contributions of the HDRs (2.44) to the invariant amplitudes are
defined by splitting the corresponding integration ranges s+ ≤ s′ ≤ ∞ and tπ ≤ t′ ≤ ∞ at some
appropriate values sa =W 2

a and ta, respectively, which yields the following asymptotic contributions

A+
∣∣
asym

(s, t) =
1

π

∞∫

sa

ds′
[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImA+(s′, z′s) +

1

π

∞∫

ta

dt′
ImA+(t′, z′t)

t′ − t
,

A−∣∣
asym

(s, t) =
1

π

∞∫

sa

ds′
[

1

s′ − s
− 1

s′ − u

]
ImA−(s′, z′s) +

1

π

∞∫

ta

dt′
s− u

s′ − u′
ImA−(t′, z′t)

t′ − t
,

B+
∣∣
asym

(s, t) =
1

π

∞∫

sa

ds′
[

1

s′ − s
− 1

s′ − u

]
ImB+(s′, z′s) +

1

π

∞∫

ta

dt′
s− u

s′ − u′
ImB+(t′, z′t)

t′ − t
,

B−∣∣
asym

(s, t) =
1

π

∞∫

sa

ds′
[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImB−(s′, z′s) +

1

π

∞∫

ta

dt′
ImB−(t′, z′t)

t′ − t
, (D.1)

and the remaining non-asymptotic parts are given by the corresponding integrals over s+ ≤ s′ ≤ sa
and tπ ≤ t′ ≤ ta, respectively, plus the nucleon pole terms N I(s, t) for the amplitudes BI(s, t). The
internal (primed) kinematics are given by (cf. Sect. 2.3 and especially (2.42))

s′(t′; a, b) =
1

2

(
Σ− t′ +

√
(t′ − Σ+ 2a)2 − 4b

)
, t′(s′; a, b) = − b

s′ − a
+Σ− s′ − a ,

u′(t′; a, b) =
1

2

(
Σ− t′ −

√
(t′ − Σ+ 2a)2 − 4b

)
, (D.2)

where the parameter b is fixed by the external (unprimed) kinematics as

(s− a)(Σ− s− t− a) = b = (s′ − a)(u′ − a) , (D.3)

such that

s′(u′; a, b) =
b

u′ − a
+ a , u′(s′; a, b) =

b

s′ − a
+ a . (D.4)

Thus (for given a and finite b), for the s-channel integrals we need the asymptotic behavior in the
limit

s′ → ∞ ⇒ t′ → −∞ , u′ → a , (D.5)

while in the t-channel integrals the asymptotic behavior is determined by

t′ → ∞ ⇒ u′ → −∞ , s′ → a . (D.6)
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From (D.1) the asymptotic parts of the s- and t-channel partial waves may then be deduced by
the projection formulae (A.14) and (B.9) as

f Il+
∣∣
asym

(W ) =

1∫

−1

dzs

{
R1

l,l+1(W, zs) A
I
∣∣
asym

(W, zs) +R2
l,l+1(W, zs) B

I
∣∣
asym

(W, zs)
}
,

f I(l+1)−

∣∣∣
asym

(W ) =

1∫

−1

dzs

{
R1

l+1,l(W, zs) A
I
∣∣
asym

(W, zs) +R2
l+1,l(W, zs) B

I
∣∣
asym

(W, zs)
}
,

fJ+
∣∣
asym

(t) = ζ̃J(t)

1∫

0

dzt

{
ũJ(t, zt) A

I
∣∣
asym

(t, zt) + ṽJ(t, zt) B
I
∣∣
asym

(t, zt)
}
,

fJ−
∣∣
asym

(t) = ζ̃J(t)

1∫

0

dzt w̃J(t, zt) B
I
∣∣
asym

(t, zt) , (D.7)

where for the t-channel partial waves we have again I = +/− for even/odd J . Note that for these
asymptotic contributions we do not expand the absorptive parts inside the integrals in order to take
into account the high-energy behavior of the full invariant amplitudes as given by Regge theory [108].
Therefore, also for the so-called driving terms (i.e. the sums of all higher partial waves that are not
taken into account explicitly [12,19] as well as the asymptotic contributions of the lower partial waves
treated dynamically) the integration ranges are limited by sa and ta in order to avoid double counting
of the asymptotic regions. This procedure follows [12, 19], motivated by the observations that, first,
for higher and higher energies one would be forced to explicitly use higher and higher partial waves as
well in order to ensure the validity of the partial-wave expansion, and second, no available information
in the asymptotic regime is lost without need. In Sect. 5.3 we explicitly demonstrate the matching of
the Regge model to truncated sums of the lowest partial waves with l ≤ lmax for lmax ∈ {3, 4, 5}.

In the following, the contributions from the asymptotic regions in both channels will be examined
in the framework of Regge theory. For a general introduction see e.g. [109].

D.1 s-channel asymptotics

First of all, contributions from t-channel Regge trajectories, i.e. the leading Pomeron (It = 0)

trajectory αP (t
′) ≈ α

(0)
P = 1 (roughly independent of t′ but with exponential residue function

βP (t
′) = σP exp bP t′

2 , where σP represents the asymptotic total-cross-section value for ππ scatter-
ing and bP is the width of the diffraction peak, cf. [12, 19]) as well as the ρ (It = 1) and f (It = 0)

trajectories αρ(t
′) = α

(0)
ρ +α

(1)
ρ t′ (and αf (t

′) in analogy) should be negligible, since due to (D.5) they
will behave as

ImA(s′, t′) ∼ βP (t
′)s′αP (t′) ∼ e

bP t′

2 s′ ∼ e−s′s′ , ImA(s′, t′) ∼ βρ(t
′)s′αρ(t′) ∼ s′α

(0)
ρ +t′α

(1)
ρ ∼ s′−s′

(D.8)
for s′ → ∞, leading to an exponential suppression.

Let us briefly review the u-channel-exchange contributions to the s-channel reactions of backward
πN scattering as discussed in [73]. The invariant amplitudes can be parameterized according to (cf.
also [29])

A(s′, u′) =
∑

i

βAi (u
′)ζi(u′)

Γ
(
αi(u′)− 1

2

)
(
s′

sR

)αi(u′)− 1
2

, B(s′, u′) =
∑

i

βBi (u′)ζi(u′)

Γ
(
αi(u′)− 1

2

)
(
s′

sR

)αi(u′)− 1
2

, (D.9)
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where both sums run over the four trajectories i ∈ {Nα, Nγ ,∆δ,∆β}, and the Regge propagators ζi(u
′)

are given by

ζi(u
′) =

1 + Si exp
(
− iπ

[
αi(u

′)− 1
2

])

sin
(
π
[
αi(u′)− 1

2

]) . (D.10)

Besides the scaling factor sR = 1GeV2, the following Regge residues β
A/B
i (u′) and Regge trajectories

αi(u
′) are employed:

βAi (u
′) = ai + biu

′ , βBi (u′) = ci + diu
′ , αi(u

′) = α
(0)
i + α′u′ , (D.11)

i.e. both the residues and the trajectories are linearly parameterized, and for the latter an identical

slope α
(1)
i = α′ is used for all i. The signature Si = (−1)Ji−

1
2 of the trajectory i is positive for Nα and

∆β and negative for Nγ and ∆δ. Since Im ζi(u
′) = −Si, we may conclude that the imaginary parts of

the invariant amplitudes in the u-channel isospin basis Iu ∈ {1/2 = N, 3/2 = ∆} can be written as

ImAN (s′, u′) =
∑

i∈{Nα,Nγ}
β̃Ai (u

′)

(
s′

sR

)αi(u
′)− 1

2

, ImA∆(s′, u′) =
∑

i∈{∆δ ,∆β}
β̃Ai (u

′)

(
s′

sR

)αi(u
′)− 1

2

,

(D.12)
with the abbreviations

β̃Ai (u
′) = − Siβ

A
i (u

′)

Γ
(
αi(u′)− 1

2

) , (D.13)

and analogously for the B amplitudes. Using now the isospin crossing relations (2.28), we finally
obtain the absorptive parts

ImA+(s′, u′(s′, t′)) = +
1

3

∑

i∈{Nα,Nγ}
β̃Ai (u

′)

(
s′

sR

)αi(u
′)− 1

2

+
2

3

∑

i∈{∆δ,∆β}
β̃Ai (u

′)

(
s′

sR

)αi(u
′)− 1

2

,

ImA−(s′, u′(s′, t′)) = −1

3

∑

i∈{Nα,Nγ}
β̃Ai (u

′)

(
s′

sR

)αi(u′)− 1
2

+
1

3

∑

i∈{∆δ,∆β}
β̃Ai (u

′)

(
s′

sR

)αi(u′)− 1
2

,

ImB+(s′, u′(s′, t′)) = +
1

3

∑

i∈{Nα,Nγ}
β̃Bi (u′)

(
s′

sR

)αi(u′)− 1
2

+
2

3

∑

i∈{∆δ,∆β}
β̃Bi (u′)

(
s′

sR

)αi(u′)− 1
2

,

ImB−(s′, u′(s′, t′)) = −1

3

∑

i∈{Nα,Nγ}
β̃Bi (u′)

(
s′

sR

)αi(u
′)− 1

2

+
1

3

∑

i∈{∆δ,∆β}
β̃Bi (u′)

(
s′

sR

)αi(u
′)− 1

2

, (D.14)

where the dependence on (s′, t′) can be translated into dependencies on (s′, z′s) for the s-channel
integrals and (t′, z′t) for the t-channel integrals via (2.52). For convenience we also give the numerical
values of [73] for the 21 real parameters in Table 2.

As a byproduct, we can use these relations to infer the high-energy behavior of the HDR s-channel
integrals: from the trajectory parameters given in Table 2 it follows that the high-energy tail of the
integrals will be governed by the ∆δ trajectory. Explicitly, the integrands for A+ and B− will behave
as

s′−1s′α∆δ
(a)− 1

2 = s′α
′a−1.47 =

{
s′−1.88 for a = −23.19M2

π ,

s′−1.52 for a = −2.71M2
π ,

(D.15)

for u′ → a, whereas the integrands for A− and B+ fall off faster by one power in s′ (cf. (D.1)). We
thus conclude that the s-channel part of the (unsubtracted) HDRs (2.44) converges in principle for
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Nα Nγ ∆δ ∆β

a
[
GeV−1

]
−60.68 47.22 −75.15 1419.99

b
[
GeV−3

]
326.52 −215.84 −138.75 3052.84

c
[
GeV−2

]
546.40 −101.11 64.16 −192.64

d
[
GeV−4

]
307.42 −128.04 86.77 −695.81

α(0) −0.36 −0.62 0.03 −2.65

α′ [GeV−2
]

0.908

Table 2: Regge-model parameter values for backward πN scattering as given in [73].

a < 26.57M2
π . Note that in order to investigate the behavior of these asymptotic contributions in

the “fixed-t limit” a → −∞ (as discussed in Appendix C.2) it is important to take the limits in
the correct order, since u′ → a only after s′ → ∞. Since αi(u

′) − 1
2 < −1 for sufficiently large and

negative a, the s-channel Regge contributions vanish in the limit s′ → ∞ for such values of a. As
shown in Sect. 5.4, these asymptotic contributions are numerically small for the optimal value of a
(and a reasonable choice of sa), and thus they can be safely neglected for a→ −∞, regardless of the
pathological behavior of the Regge model due to the Gamma function in this case.

D.2 t-channel asymptotics

Similarly to the previous section one could use Regge theory to describe the t-channel asymptotic
region. However, the significance of these contributions in view of the corresponding low-energy
region differs strongly from the s-channel: while contributing crucially to the dispersive integrals,
the pseudophysical region tπ ≤ t ≤ tN cannot be constrained from experiment, but requires an
analytic continuation. Within our system of RS equations this task naturally takes the form of a MO
problem, as explained in Sects. 3 and 5. The solution of these equations becomes rather involved once
intermediate states other than ππ are energetically allowed, which happens around 1GeV (especially
K̄K above 2MK). In view of the ensuing uncertainty of the t-channel partial waves even below the
N̄N threshold it is clear that the inclusion of phase-shift solutions above tN [70], and even more so the
modeling of the high-energy region, will be of little practical relevance. Moreover, as shown explicitly
in Sect. 5.4, already the s-channel Regge contributions are numerically immaterial, in particular if
subtractions are performed, which provides evidence that also the high-energy region in the t-channel
can be safely ignored. For these reasons, we will not consider the t-channel asymptotic region any
further.

D.3 Subtracted asymptotics

Here, we show how to incorporate the effects due to subtractions into the Regge description of the
asymptotic parts of the corresponding subtracted HDRs (4.11) and (4.12). However, according to
Appendix D.2 all asymptotic t-channel contributions will be neglected.

For the high-energy tail s′ > sa of the s-channel integrals, according to Appendix D.1 the absorptive
parts may generically be written as sums of Regge-trajectory contributions

ImXIu(s′, u′(s′, t′)) =
∑

i

β̃Xi (u′)

(
s′

sR

)αi(u
′)− 1

2

for X ∈ {A,B} , (D.16)
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with summands of the generic form (i.e. dropping the indices X and i for the time being)

β̃(u′) = − Sβ(u′)
Γ
(
α(u′)− 1

2

) , β(u′) = β(0) + β(1)u′ , α(u′) = α(0) + α′u′ . (D.17)

While the evaluation of the Regge contributions is straightforward in the un- and once-subtracted
case, for two subtractions one furthermore needs the derivative

[
∂t

{
β̃(u′)

(
s′

sR

)α(u′)− 1
2

}]

(0,0)

=
[
∂tt

′]
(0,0)


 S
Γ
(
α
(
u′(s′, t′)

)
− 1

2

)
(
s′

sR

)α
(
u′(s′,t′)

)
− 1

2




(0,0)

(D.18)

×
[
β(1) + α′β

(
u′(s′, t′)

){
log

s′

sR
−Ψ

(
α
(
u′(s′, t′)

)
− 1

2

)}]

(0,0)

,

where Ψ(z) denotes the digamma function defined as the logarithmic derivative of the gamma function

Ψ(z) =
d

dz
log Γ(z) =

Γ′(z)
Γ(z)

. (D.19)

To this end, one may use u′(s′, t′) = Σ− s′ − t′ and (cf. (4.10))

[
t′
]
(0,0)

= −(s′ − s0)
2

s′ − a
,

[
∂tt

′]
(0,0)

=
s0 − a

s′ − a
. (D.20)

After utilizing the crossing relations in order to rewrite the Regge contributions in the I ∈ {+,−}
isospin basis and expressing t′ as well as the corresponding kernel functions in terms of (s′, z′s), we can
perform the partial-wave projections of the s-channel contributions onto both s- and t-channel partial
waves according to (D.7), where again the implicit kinematical dependencies have to be taken into
account accordingly.

Finally, we demonstrate the projection onto the lowest t-channel partial waves with J ≤ 2 explicitly.
The n-times subtracted versions of (D.7) immediately lead to

f0+
∣∣n-sub
asym

(t) =
1

4π

1∫

0

dzt p
2
t

{
−A+

∣∣n-sub
asym

(t, zt) + 4mq2t z
2
t

B+|n-subasym (t, zt)

4ptqtzt

}
,

f1+
∣∣n-sub
asym

(t) =
1

4π

1∫

0

dzt z
2
t

{
− 4p2t

A−|n-subasym (t, zt)

4ptqtzt
+mB−∣∣n-sub

asym
(t, zt)

}
,

f1−
∣∣n-sub
asym

(t) =
1

4π

1∫

0

dzt
1− z2t√

2
B−∣∣n-sub

asym
(t, zt) ,

f2+
∣∣n-sub
asym

(t) =
1

4π

1∫

0

dzt
3z2t − 1

2q2t

{
−A+

∣∣n-sub
asym

(t, zt) + 4mq2t z
2
t

B+|n-subasym (t, zt)

4ptqtzt

}
,

f2−
∣∣n-sub
asym

(t) =
1

4π

1∫

0

dzt 2
√
6 z2t

(
1− z2t

)B+|n-subasym (t, zt)

4ptqtzt
, (D.21)

101



again written in terms of quantities that are always real since 4ptqtzt = 4mν. Here, the asymptotic
s-channel contributions to the invariant amplitudes for e.g. the twice-subtracted case read (i.e. as
functions of (t, zt), cf. (B.14) for z

′
s(t, s

′; zt))

A+
∣∣2-sub
s-asym

(t, zt) =
1

π

∞∫

sa

ds′
{[

2(s′ − s0) + t

(s′ − s0 +
t
2 )

2 − 4p2t q
2
t z

2
t

− 1

s′ − a

]
ImA+(s′, z′s)

−
(
h0(s

′)− t

(s′ − s0)2

)[
ImA+(s′, z′s)

]
(0,0)

− h0(s
′) t
[
∂tImA+(s′, z′s)

]
(0,0)

}
,

A−∣∣2-sub
s-asym

(t, zt)

4ptqtzt
=

1

π

∞∫

sa

ds′
{

ImA−(s′, z′s)

(s′ − s0 +
t
2 )

2 − 4p2t q
2
t z

2
t

−
[ImA−(s′, z′s)](0,0)

(s′ − s0)2

}
, (D.22)

and analogously for B−(t, zt) and B+(t, zt)/(4ptqtzt). Note that again only real squares of momenta
and zt occur and hence these formulae are valid in all kinematical regions. Furthermore, by rewriting
the general t-channel partial-wave projections (3.6) for both even and odd J in terms of real quantities
(i.e. ν-even amplitudes and squares of momenta as well as squares of zt) as above, the partial waves
exhibit ostensible poles at tπ for all J ≥ 2 and in addition at tN for all J ≥ 3, while from the
discussion of their threshold behavior in Sect. 3.3.1 we know that these poles are immaterial. The
reason for this behavior can be understood by first noting that for ptqt → 0 the asymptotic (s-channel)
contributions (D.22) no longer depend on zt. The orthogonality of the Legendre polynomials PJ(zt) for
even J ≥ 2 and odd J ≥ 3 then balances the poles and leads to the expected finite (but non-vanishing)
values of the partial waves at both the pseudothreshold tπ and the threshold tN (cf. the explicit case
for f2+(t) in (D.21)).
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