7,508 research outputs found

    Behavioral plasticity and G × E of reproductive tactics in Nicrophorus vespilloides burying beetles

    Get PDF
    Journal Article© 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.Phenotypic plasticity is important in the evolution of traits and facilitates adaptation to rapid environmental changes. However, variation in plasticity at the individual level, and the heritable basis underlying this plasticity is rarely quantified for behavioral traits. Alternative behavioral reproductive tactics are key components of mating systems but are not often considered within a phenotypic plasticity framework (i.e., as reaction norms). Here, using lines artificially selected for repeated mating rate, we test for genetic (G × E) sources of variation in reproductive behavior of male Nicrophorus vespilloides burying beetles (including signaling behavior), as well as the role of individual body size, in responsiveness to changes in social environment. The results show that body size influences the response of individuals' signaling behavior to changes in the social environment. Moreover, there was G × E underlying the responses of males to variation in the quality of social environment experienced (relative size of focal male compared to his rival). This shows that individual variation in plasticity and social sensitivity of signaling behavior can evolve in response to selection on investment in mating behavior, with males selected for high mating investment having greater social sensitivity.NER

    Petrogenetic significance of chromian spinels from the Sudbury Igneous Complex, Ontario, Canada

    Get PDF
    Chromian spinels occur in mafic-ultramafic inclusions in the Sublayer of the Sudbury Igneous Complex (SIC) as well as in mafic-ultramafic rocks in the immediate footwall of the Sublayer. The host rocks are pyroxenite and melanorite with minor dunite, harzburgite, and melatroctolite. As common accessory phases in these rocks, the chromian spinels display euhedral or subhedral forms and are included in olivine and orthopyroxene. Chromian spinel grains generally have ilmenite lamellae and contain abundant inclusions (zircon, olivine, diopside, plagioclase, biotite, and sulfide). All the chromian spinels have similar trace element abundances and are rich in TiO2 (0.5-15 wt.%). They have constant Cr# (100Cr/(Cr + Al)) (55-70) and exhibit a continuum in composition that traverses the normal fields of spinels in a Al-(Fe3+ + 2Ti)-Cr triangular diagram. This continuum extends to that of the composition of chromian magnetite in the host norite matrix to the mafic -ultramafic inclusions. This continuum in composition of the spinels suggests that the noritic matrix to the Sublayer formed from the same magma as the inclusions. A positive correlation between the Cr and Al contents of the spinels was probably produced by dilution of these elements by Fe3+ contributed, perhaps, by a plagioclase-saturated melt. Zircon inclusions in a chromian spinel grain reflect incorporation of crustal, felsic materials into the magma before crystallization of chromian spinel. The chemical characteristics and mineral inclusions of the spinels suggest that the Sublayer formed in response to magma mixing. It is suggested that subsequent to the formation of the crustal melt, mantle-derived high-Mg magmas mixed vigourously with this and generated the magmatic sulfides that eventually formed the Ni - Cu - platinum-group elements sulfide ore deposits. Some of the early crystallization products of the high-Mg magma settled to the chamber floor, where they partially mixed with the crustal melt and formed the mafic - ultramafic inclusions and footwall complexes.published_or_final_versio

    Human iPSC-Derived Neural Crest Stem Cells Exhibit Low Immunogenicity

    Get PDF
    Recent clinical trials are evaluating induced pluripotent stem cells (iPSCs) as a cellular therapy in the field of regenerative medicine. The widespread clinical utility of iPSCs is expected to be realized using allogeneic cells that have undergone thorough safety evaluations, including assessment of their immunogenicity. IPSC-derived neural crest stem cells (NCSCs) have significant potential in regenerative medicine; however, their application in cellular therapy has not been widely studied to date, and no reports on their potential immunogenicity have been published so far. In this study, we have assessed the expression of immune-related antigens in iPSC-NCSCs, including human leukocyte antigen (HLA) class I and II and co-stimulatory molecules. To investigate functional immunogenicity, we used iPSC-NCSCs as stimulator cells in a one-way mixed lymphocyte reaction. In these experiments, iPSC-NCSCs did not stimulate detectable proliferation of CD3+ and CD3+CD8+ T cells or induce cytokine production. We show that this was not a result of any immunosuppressive features of iPSC-NCSCs, but rather more consistent with their non-immunogenic molecular phenotype. These results are encouraging for the potential future use of iPSC-NCSCs as a cellular therapy

    The potential yield of Tai Chi in cancer survivorship

    Get PDF
    The purpose of the current paper is to encourage research into all areas of Tai Chi and cancer survivorship. Tai Chi is defined here as a combination of Chinese philosophy, martial and healing arts. Tai Chi is a form of physical activity that is carried out at either a light or moderate intensity. The practice of Tai Chi integrates mental concentration and breathing control [1,2]. We first discuss the role of light physical activity in cancer survivorship and then narrow our focus to Tai Chi per se

    High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization

    Get PDF
    High throughput automated fermentation systems have become a useful tool in early bioprocess development. In this study, we investigated a 24 x 15 mL single use microbioreactor system, ambr 15f, designed for microbial culture. We compared the fed-batch growth and production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different carbon sources were tested using bolus, linear or exponential feeding strategies, showing the capacity of the ambr 15f system to handle automated feeding. We used power per unit volume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which were previously scaled-up to 20 L with a different biological system, thus showing a potential 1,300 fold scale comparability in terms of both growth and product yield. By exposing the cells grown in the ambr 15f system to a level of shear expected in an industrial centrifuge, we determined that the cells are as robust as those from a bench scale bioreactor. These results provide evidence that the ambr 15f system is an efficient high throughput microbial system that can be used for strain and molecule selection as well as rapid scale-up. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 2017

    Selection on an antagonistic behavioral trait can drive rapid genital coevolution in the burying beetle, Nicrophorus vespilloides

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Male and female genital morphology varies widely across many taxa, and even among populations. Disentangling potential sources of selection on genital morphology is problematic because each sex is predicted to respond to adaptations in the other due to reproductive conflicts of interest. To test how variation in this sexual conflict trait relates to variation in genital morphology we used our previously developed artificial selection lines for high and low repeated mating rates. We selected for high and low repeated mating rates using monogamous pairings to eliminate contemporaneous female choice and male-male competition. Male and female genital shape responded rapidly to selection on repeated mating rate. High and low mating rate lines diverged from control lines after only 10 generations of selection. We also detected significant patterns of male and female genital shape coevolution among selection regimes. We argue that because our selection lines differ in sexual conflict, these results support the hypothesis that sexually antagonistic coevolution can drive the rapid divergence of genital morphology. The greatest divergence in morphology corresponded with lines in which the resolution of intrasexual conflict over mating rate was biased in favor of male interests.Funding was provided by Natural Environment Research Council grants NE/I025468/1 to N.J.R. and A.J.M., and NE/H003738/1 to A.J.M

    The absolute position of a resonance peak

    Get PDF
    It is common practice in scattering theory to correlate between the position of a resonance peak in the cross section and the real part of a complex energy of a pole of the scattering amplitude. In this work we show that the resonance peak position appears at the absolute value of the pole's complex energy rather than its real part. We further demonstrate that a local theory of resonances can still be used even in cases previously thought impossible
    corecore