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Phenotypic plasticity is important in the evolution of traits and facilitates adaptation to rapid environmental changes. However,

variation in plasticity at the individual level, and the heritable basis underlying this plasticity is rarely quantified for behavioral

traits. Alternative behavioral reproductive tactics are key components of mating systems but are not often considered within a

phenotypic plasticity framework (i.e., as reaction norms). Here, using lines artificially selected for repeated mating rate, we test for

genetic (G × E) sources of variation in reproductive behavior of male Nicrophorus vespilloides burying beetles (including signaling

behavior), as well as the role of individual body size, in responsiveness to changes in social environment. The results show that

body size influences the response of individuals’ signaling behavior to changes in the social environment. Moreover, there was

G × E underlying the responses of males to variation in the quality of social environment experienced (relative size of focal male

compared to his rival). This shows that individual variation in plasticity and social sensitivity of signaling behavior can evolve in

response to selection on investment in mating behavior, with males selected for high mating investment having greater social

sensitivity.

KEY WORDS: Alternative reproductive tactics, conditional strategy, contest behavior, male–male competition, phenotypic

plasticity.

Phenotypic plasticity, the environmentally sensitive production of

alternative phenotypes by given genotypes (DeWitt and Scheiner

2004), is a common, but relatively poorly understood, feature

of organisms (Gomez-Mestre and Jovani 2013). Models show

that fluctuating or rapid directional change in the environment

is expected to provide strong selection for plasticity, which can

increase the speed at which populations respond to environ-

mental change and maintain genetic variation, so promoting the

persistence of populations (Gomez-Mestre and Jovani 2013).

Phenotypic plasticity can be either irreversible (developmental

plasticity) or reversible (i.e., behavioral and/or physiological

plasticity), and is described using reaction norms (Piersma and

Drent 2003). The majority of studies of phenotypic plasticity

have focused on irreversible (developmental) plasticity, but it

has more recently been recognized that reversible plasticity,

especially behavioral plasticity, may be central to understanding

organismal adaptation (Nussey et al. 2007; Dingemanse et al.

2010; Dingemanse and Wolf 2013; Foster 2013).

Population responses to environmental variation will de-

pend upon plasticity at the level of the individual (Nussey

et al. 2007; Han and Brooks 2014) and a behavioral response is

usually the first response of organisms to a rapid change in their

environment (Mayr 1963). However, despite its potential impor-

tance individual-level plasticity of behavioral traits, and, more
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importantly, whether this plasticity has a heritable basis (i.e.,

genotype by environment interactions; G × E) is rarely mea-

sured (Nussey et al. 2007; Dingemanse and Wolf 2013; but see

Taylor et al. 2013; Bretman et al. 2014 for notable exceptions).

Behavioral plasticity allows individuals to adjust their behavior

to rapid changes in their current environment and is expected to

evolve when there is a fitness advantage over less plastic indi-

viduals (Dingemanse and Wolf 2013). Such reversible plasticity

is expected when environmental variation is predominantly fine

grained (varies within the lifetime of an individual) rather than

coarse grained (varies primarily between, rather than within, gen-

erations) (Snell-Rood 2013), and can evolve when there is herita-

ble variation underlying plasticity (G × E; Nussey et al. 2007).

Alternative reproductive tactics are a key component of many

mating systems (Hazel et al. 1990; Gross 1996) and provide a

potential example of phenotypic plasticity. However, alternative

reproductive tactics are rarely explicitly considered within the

framework of phenotypic plasticity (Carroll and Corneli 1995;

Bretman et al. 2011a; Neff and Svensson 2013). Instead, theo-

retical treatments of the evolution and maintenance of alternative

reproductive strategies typically present a dichotomy between

“genetic” causes (fixed or mixed strategies) and “environmental”

causes (conditional strategies) of phenotypic variation in mating

tactics that make up an individual’s overall reproductive strat-

egy (Dawkins 1980; Dominey 1984; Gross 1996; Tomkins and

Hazel 2007). However, as is true for other phenotypic traits, both

genetic and environmental variation are likely to be important

in determining the expression of reproductive tactics (Neff and

Svensson 2013) and alternatives may be expressed as reversible

(e.g., behavioral), not just as irreversible (developmental) traits.

When G × Es influence alternative reproductive strategies,

discrete alternative reproductive tactics reflect a threshold trait

whose expression depends on both the social environment (E)

experienced by the individual (Hazel et al. 2004; Tomkins and

Hazel 2007; Neff and Svensson 2013), and genetic variation (G)

for the switch point between tactics (Roff 1996). This approach

has been used to investigate the expression of alternative repro-

ductive tactics of irreversible (discontinuous) morphological traits

(Tomkins and Brown 2004; Buzatto et al. 2010; Tomkins et al.

2011), but there has been considerably less attention given to

quantifying genetic variation in the expression of alternative re-

productive tactics of reversible, behavioral, traits (Neff and Svens-

son 2013; although see Carroll and Corneli 1995). To understand

the maintenance and evolution of alternative behavioral tactics,

and behavioral plasticity in general, it is therefore important to

identify sources of individual and genetic variation in response

to changes in the environment experienced by individuals on the

expression of behaviors involved in these reproductive tactics

(West-Eberhard 1989).

In the current study we test for genetic (G × E) sources

of variation in reproductive behavior (i.e., behavioral plastic-

ity of reproductive tactics) in response to changes in the social

environment experienced by individuals, using burying beetles

(Nicrophorus vespilloides) as a model. Male burying beetles ac-

tively compete with each other for access to breeding resources

(i.e., small vertebrate carcasses), and when they find a suitable

carcass will emit pheromones as a signal to attract females. Emis-

sion of pheromones, as well as odors from the carcass, may also

attract other males. As a consequence, intrasexual competition

is common and usually leads to the establishment of a domi-

nant male and female pair, or “resource holders,” who process

the carcass and use it for breeding (Pukowski 1933; Eggert and

Müller 1989a). However, when there is more than one individ-

ual of a given sex at a carcass, females and males who are not

resource holders can adopt alternative, subordinate, reproduc-

tive tactics to increase the probability of reproductive success

(Eggert and Müller 1989a, b, 1997). Subordinate females may

lay eggs near the carcass (brood parasites) and subordinate males

adopt a “satellite” tactic and attract females by signaling (emitting

pheromones) off the carcass (Eggert and Müller 1989a). Satellite

males sneak copulations with females (Eggert and Müller 1989a;

Müller et al. 1998; Pettinger et al. 2011) and all females appear

to be multiply mated (Pettinger et al. 2011), creating uncertainty

over paternity (Sakaluk and Müller 2008).

Previous work has shown that the expression of alternative

tactics is reversible (Eggert and Müller 1989a), conditional on the

size of the focal male (Beeler et al. 1999; Walling et al. 2008).

Larger males are generally competitively superior (dominant) to

smaller males (Müller et al. 2007; Hopwood et al. 2014), and

large males are more likely to display “resource-holder” behav-

iors than small males (e.g., signaling on the carcass) in the absence

of competitors (Beeler et al. 1999; Walling et al. 2008). There is

also evidence that such behaviors have a heritable basis (Eggert

1992). However, G × E of the expression of alternative reproduc-

tive tactics in burying beetles have not been explicitly quantified,

especially the change of reproductive behavior in response to the

arrival of a competitor male (i.e., a change in the social environ-

ment; but see Sakaluk and Müller 2008 for an example of male

behavioral plasticity in duration of copulation in response to so-

cial environmental variation). Such rapid changes in the social

environment are a central feature of burying beetle natural history

(Scott 1998; Sakaluk and Müller 2008; Hopwood et al. 2014).

Here we used artificial selection on repeated mating rate, a pa-

ternity assurance trait in N. vespilloides beetles (Head et al. 2014),

to examine how variation in individual characteristics (body size)

and genetic background (line) interact with social environmental

effects to determine the expression of alternative reproductive tac-

tics (i.e., “resource-holder” vs. “satellite” behaviors). In general,

9 7 0 EVOLUTION APRIL 2015



PLASTICITY IN SIGNALING BEHAVIOR

male social plasticity in the context of reproduction is expected to

be greater when there is increased mating competition and when

female control over mating is low (Bretman et al. 2011a). Male

burying beetles respond to increased mating competition by in-

creasing their repeated mating rate (House et al. 2008; Sakaluk

and Müller 2008), and control over mating rate is primarily de-

termined by male behavior in N. vespilloides (Head et al. 2014).

Consequently, we predict that males artificially selected for high

repeated mating rate will be more sensitive to variation in the so-

cial environment that they experience than males selected for low

mating rate (see also Sih et al. 2014). In addition, using artificial

selection lines allows us to not only identify genetic effects under-

lying behavioral plasticity but also provides us with information

on how selection shapes these traits (e.g., a response of signaling

behavior to selection on investment in mating rate indicates that

these traits are genetically correlated) (Müller et al. 1998). To

examine the effects of social environment on the expression of

alternative reproductive behaviors, we recorded male investment

in resource holding behaviors in general (the proportion of time

spent on the carcass) in addition to each behavioral tactic (the

proportion of time spent signaling on the carcass vs. signaling off

the carcass) in both the absence and presence of a competitor. This

allowed us to determine whether signaling behavior is plastic in

response to a change in the social environment per se as well as

establishing the role of body size in moderating the degree of be-

havioral plasticity. By assessing the behavior of males from differ-

ent selection regimes in different social environments, we are also

able to investigate the effects of genotype-by-environment inter-

actions on the expression of behaviors associated with alternative

reproductive tactics. Furthermore, we also examined whether the

quality of the social environment experienced by focal males (i.e.,

the size of males in relation to their competitor) affected the ex-

pression of behaviors, and whether there is any genetic variation

underlying this response.

We predicted that
� Focal males would change their behavior when a competitor

was introduced (i.e., there is behavioral plasticity).
� Relative body size would mediate this response, with larger

males investing more in resource-holding behaviors than small

males.
� There would be underlying genetic variation for this behavioral

plasticity (i.e., there would be a significant selection regime ×
social environment interaction), with males selected for high

mating rates more socially sensitive to variation in the social

environment than males selected for low mating rates.

Material and Methods
EXPERIMENTAL SETUP

Beetles used in this experiment were obtained from generation

12 of lines selected for high and low mating rate (Supporting

Information; for details of selection regime, origin, and mainte-

nance of beetles see Head et al. 2014). Focal males used in our

experiment were sexually mature, unmated virgins 13–15 days

post eclosion. We setup 40 males per replicate line (N = 160 in

total), but mortality in either focal or competitor males prior to ob-

servations resulted in slightly reduced sample sizes (High 1 = 31;

High 2 = 39; Low 1 = 30; Low 2 = 38; final sample size = 139).

We did not use males from the control selection lines in our ex-

periment because we were explicitly interested in how divergence

in mating rate influences reproductive tactics. Prior to behavioral

observations, all males were kept in individual containers (clear

plastic container: 7 × 7 × 4 cm) filled with 2 cm of moist soil, in

conditions identical to those experienced during selection. Com-

petitor males were taken from a wild-derived stock population,

which had been maintained in the laboratory for two generations.

These males were also housed individually before being used in

the experiment. Prior to being added to experimental containers,

we determined the mass (to 0.0001 g using an Ohaus Explorer

balance) and size (pronotum width; to 0.1 mm using dial callipers)

of both focal and competitor males. Males were then placed in an

experimental container, which consisted of a transparent plastic

box (17 × 11 × 6 cm) containing 1 cm of moist soil and a 15–

25 g freshly thawed mouse carcass. Competitor males were given

a white mark on the top of their pronotum to facilitate male

identification. Marking does not affect behavior (Hopwood et al.

2013).

EXPERIMENTAL DESIGN

To investigate the genetic basis of behavioral plasticity, we ob-

served behavior of focal males from different genetic backgrounds

(selection regimes) when by themselves and in the presence of

a rival male (competitor). Two approaches were used to eval-

uate dominant males (resource holders) and subordinate males

(satellite). First, we define the total amount of time that fo-

cal males spend on the carcass (general activity) as a proxy of

“resource-holding” behavior. General activity included signaling

behavior, eating, self-grooming, and walking around on the car-

cass (Beeler et al. 1999). Second, we evaluated male signaling

behavior itself. In burying beetles this involves the emission of

pheromones and is easily observed as males adopt a stereotypical

“headstand” posture, lifting and extending their abdomens into

the air to emit pheromones (Beeler et al. 1999). Dominant males

(resource holders) spend more of their time signaling on the car-

cass, whereas subordinate males spend more time signaling off

the carcass (satellites) (Eggert and Müller 1989a).

The signaling (emission of pheromones) and general activ-

ity of each male was monitored by scan sampling every 10 min

for 4 h prior to the onset of the scotophase, the time of maximal

signaling effort in this species (Walling et al. 2008). Male posi-

tion was recorded (on-carcass, off-carcass, or not visible) and, if
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visible, what behaviors they were engaged in (signaling, or other

behavior such as eating, self-grooming, walking). We randomly

divided focal males from each replicate line into four groups for

observation. For each group, 40 males were placed in individual

experimental boxes in an incubator with controlled temperature

(20°C) and photoperiod (18 light–6 dark). Focal males were added

to the container with the breeding resource (mouse carcass) and

left alone for 24 h to establish residency. The behavior of these

focal males was then first observed in the absence of a competitor.

The following morning a competitor male was added to the exper-

imental container and the two males were allowed to acclimate

and interact for a further 24 h before focal male behavior was

recorded. This protocol of staggering the arrival of males repli-

cates male arrival behavior at carcasses in the wild (Hopwood

et al. 2014).

The data collected allowed us to quantify G × E of behavioral

plasticity in the context of two key questions: (1) how does focal

male behavior change in response to the arrival of a competitor?

(2) Is this change sensitive to variation in the quality of the social

environment experienced (i.e., his size relative to that of the rival

male; Hopwood et al. 2014)? To address the first question, the

social environment was defined as a binary variable (rival male

present/absent) with the presence of G × E for behavioral plastic-

ity indicated by a significant interaction between selection regime

(G) and social environment (E). To address the second question,

we used the trials where focal males were signaling in the pres-

ence of a competitor only. G × E on the expression of signaling

behavior in response to variation in the quality of the social envi-

ronment experienced was determined by a significant interaction

between the selection regime (G) and the size of focal male rel-

ative to that of his rival (E). Competitor males were randomly

drawn from the stock population, which did not differ in mean or

variation in size from the population of focal males (focal male

pronotum width = 4.98 mm ± 0.04 (CI), competitor male prono-

tum width = 5.01 mm ± 0.04 (CI); F1,606 = 0.90, P = 0.34).

This generated variation in the social environment experienced

by focal males; from good (focal male larger than competitor)

to poor (focal male smaller than competitor). Previous work has

shown that relative male size is the most important determinant

of contest outcomes over carcasses (Hopwood et al. 2013, 2014;

Lee et al. 2014). Our experimental design replicated what is likely

to happen in the wild, where there is uncertainty about the size of

competitors that males will encounter in competition for breeding

resources (Hopwood et al. 2014).

STATISTICAL ANALYSIS

In the first analysis, we examined the effects of genetic back-

ground (selection regime; G) and social environment (presence

or absence of competitor; E) on the behavioral plasticity of the

proportion of time spent active on the carcass (“resource defense”

behavior) and signaling behavior using general linear mixed mod-

els with a Gaussian error structure and square root transformed re-

sponse variables (GLMMs). Selection regime (high or low mating

rate) and social environment (presence/absence of a competitor)

were used as explanatory variables, with the interaction between

the two included in models. Replicate nested within selection

regime and male focal identity (ID) were included as random ef-

fects, and body size of focal males (pronotum width, P) was also

included as a covariate (fixed effect). Response variables were (1)

the proportion of time spent active (signaling and/or engaged in

other behaviors) on the carcass, (2) the proportion of active time

spent signaling on the carcass, and (3) the proportion of active

time spent signaling off the carcass.

In the second analysis, we examined the effect of the qual-

ity of the social environment experienced (i.e., size relative to

competitor; E) and genetic background (selection regime; G) on

expression of signaling behavior. We used the relative size differ-

ence in pronotum width between focal and competitor males as

the measure of competitive ability (E) (Hopwood et al. 2014), and

selection regime (high or low mating rate; G), and their interac-

tion, as explanatory variables. Replicate nested within selection

regime was included as a random effect, and binomial errors were

used to fit the models. Similar to the plasticity analysis above re-

sponse variables for models were (1) the proportion of time spent

signaling on the carcass, and (2) the proportion of time spent

signaling off the carcass.

We used sequential stepwise removal of terms to test the sig-

nificance of fixed factors in the models. Comparisons between

models were made using analysis of deviance (the −2log like-

lihood and χ2 with the degrees of freedom depending on the

variables removed from the models). Results are presented with

means and ±95% CIs obtained from the analyses. All analyses

were performed using “R” version 3.0.2 (R Development Core

Team 2011).

Results
PLASTICITY OF “RESOURCE DEFENSE” BEHAVIOR

Focal males (who were introduced to the carcass before competi-

tor males) spent a greater proportion of their time on the carcass,

following the introduction of competitor males, than their rivals

(focal males: 0.85 ± 0.013 (CI), competitor males: 0.72 ± 0.021

(CI); GLM with quasibinomial errors, n = 309; F1,307 = 15.705,

P < 0.0001).

The proportion of time focal males spent on the carcass (sig-

naling and engaged in other behaviors) depended upon an inter-

action between selection regime (G) and social environment (E)

and an interaction between the size of the focal male (P) and the

social environment (E) (Table 1). In the first interaction males

from lines selected for high mating rates increased the amount
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Figure 1. Change in the time spent active on the carcass plotted against focal male body size for each selection regime and trial. Open

circles correspond to males in the “no competitor” scenario, solid circles correspond to males in the “competitor” scenario. Regression

lines were obtained from the statistical analyses as indicated in the text.
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Figure 2. Proportion of time spent active on the carcass and off the carcass when no competitor was present and when a competitor

was present in relation to selection regime (high—A, B; low—C, D), and associated individual reaction norms for the amount of time

focal males spent on the carcass (E).

of time spent on the carcass when a competitor was introduced

more than males from low lines (i.e., there was a G × E for plas-

ticity of time spent on the carcass; Figs. 1, 2A–D). In the latter

interaction when there was no competitor present, the time spent

on the carcass was independent of focal male size, but when a

competitor was introduced large males increased the amount of

time spent on the carcass whereas small males spent less time

on the carcass (i.e., the direction of change in time spent on the
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Table 1. Mixed model analyses testing plasticity in “resource de-

fence” and signaling behaviors.

On-carcass activity
x2

1 P-value

Pronotum width (P) 7.444 0.006
Selection regime (G) 3.537 0.059
Social environment (E) 0.001 0.966
P × G 0.437 0.508
P × E 4.776 0.028
G × E 5.147 0.023
P × G × E 3.029 0.081

On-carcass signaling behavior
Pronotum width (P) 7.591 0.005
Selection regime (G) 1.936 0.164
Social environment (E) 6.547 0.011
P × G 0.123 0.725
P × E 3.442 0.063
G × E 3.254 0.071
P × G × E 3.724 0.053

Off-carcass signaling behavior
Pronotum width (P) 2.903 0.088
Selection regime (G) 0.197 0.657
Social environment (E) 42.61 <0.0001
P × G 0.125 0.723
P × E 0.364 0.546
G × E 0.273 0.601
P × G × E 3.724 0.053

x2 Values to test the significance of the fixed effects were obtained by

log-likelihood ratio test following sequential stepwise removal of terms.

carcass depended on the size of the focal male involved; Fig. 1).

The interaction between selection regime and focal male size was

nonsignificant (Table 1, Fig. 1) as were the main effects of social

environment and selection regime (Table 1, Fig. 2A–D), but there

was a significant overall, positive, main effect of focal male body

size (Table 1). When the random effect ID was removed from

the original model, this did not significantly alter the fit of the

model (χ2
2= 5.21,P= 0.073), indicating considerable variation

among and within males in their response to a change in social

environment (Fig. 2E).

PLASTICITY OF SIGNALING BEHAVIOR

As expected, when a competitor male was present signaling be-

havior both on- and off-carcass changed compared to when there

was no competitor present (Fig. 3). Consequently, there was be-

havioral plasticity in signaling behavior in response to a change

in social environment. Moreover individuals varied in how they

responded to the change in environment: removal of ID from the

original model did not significantly change the fit of the model

(χ2
2= 2.33,P= 0.31), indicating high variation among and within

males in their response to a change in social environment.

Table 2. Mixed model analyses effect of variation in quality of

social environment on signaling behavior.

On-carcass signaling behavior
x2

1 P-value

Relative body size (R) 459.1 <0.0001
Selection regime (G) 3.354 0.067
R × G 53.27 0.0004

Off-carcass signaling behavior
Relative body size (R) 492.3 <0.0001
Selection regime (G) 0.001 0.972
R × G 76.23 <0.0001

x2 Values to test the significance of the fixed effects were obtained by

log-likelihood ratio test following sequential stepwise removal of terms.

When there was another male present, focal males spent

slightly less of their time signaling on the carcass than when they

were alone, but there was no significant main effect of selection

regime on the proportion of time spent signaling on the carcass

(Table 1, Fig. 3A, B), and the interaction between G (selection

regime) and E (social environment) was nonsignificant, as was

the interaction between social environment and focal male body

size (Table 1). However, there was a significant, positive effect

of the body size of focal males on the proportion of time spent

signaling on the carcass, with larger males spending more time

signaling on the carcass than smaller males (Table 1).

Focal males also spent considerably less time signaling off

the carcass (“satellite” behavior) when a competitor was present

compared to when alone (Fig. 3C, D), but as for on-carcass sig-

naling behavior, selection regime, either as a main effect or in

interaction with the social environment, had no effect on time

spent signaling (Table 1). In contrast to on-carcass signaling be-

havior, however, time spent signaling off the carcass was not

related to the body size of focal males, either as a main effect or

as an interaction with social environment (Table 1).

EFFECT OF VARIATION IN QUALITY OF SOCIAL

ENVIRONMENT ON SIGNALING BEHAVIOR

During interactions with competitors, the proportion of time spent

signaling on the carcass by focal males depended upon an inter-

action between selection regime (G) and the size of the focal male

compared to that of his rival (R) (Table 2): focal males from lines

selected for high mating rates were more sensitive to variation

in the quality of the social environment they experienced, being

more likely to spend time signaling on the carcass when larger

than their competitor, but less likely to signal on the carcass when

smaller than males from lines selected for low mating rate (Fig. 4).

However, there was no overall difference in the proportion of time

spent signaling on the carcass between males from different selec-

tions lines (main effect of selection regime; Table 2). The quality
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Figure 3. Proportion of time spent signaling on (A, B) and off (C, D) the carcass without a competitor and with a competitor. Signaling

behavior of males from high mating rate selection regimes shown in A and C (mean ± 95% CIs). Signaling behavior of males from low

mating rate selection regimes shown in B and D (mean ± 95% CIs).

of social environment experienced by males (i.e., the size of the

focal male relative to that of his rival) was the primary determi-

nant of on-carcass signaling behavior: the larger the focal male

compared to his rival, the greater the proportion of time spent

signaling on the carcass (Table 2, Fig. 4A).

A significant interaction between selection regime and rela-

tive competitive ability was also found for off-carcass signaling

behavior (Table 2). However, in contrast to on-carcass signaling

behavior focal males from lines selected for low mating rates were

more sensitive to variation in their relative competitive ability than

males from high lines (Fig. 4B). There was no overall difference

between selection lines in the amount of time spent signaling

off the carcass, but relatively small focal males were much more

likely to engage in signaling off the carcass than larger focal males

(Table 2).

Discussion
Our experiment showed that both the proportion of time that

males spent on the carcass and the proportion of time spent on

signaling behaviors (on- and off-carcass) was plastic in response

to the introduction of a rival competitor. As predicted this behav-

ioral plasticity in response to a change in social environment was

mediated by body size, with larger males investing more time in

resource-holding behaviors (both in terms of overall activity time

and signaling on the carcass) than small males. There was no

G × E for plasticity of signaling behavior (either on- or off-

carcass) in response to the introduction of a rival male, although

in both cases the effects were only marginally nonsignificant.

However, there was a G × E for plasticity of time spent active

on the carcass (resource-holding behavior), with males from lines

selected for high repeated mating rates increasing and males from

low lines decreasing overall activity on the carcass in response to

the introduction of a competitor. Moreover, there was a G × E

underlying the responses of males to variation in the quality of

the social environment that they experienced: males from lines

selected for high mating rates did not differ from low line males

in either the proportion of time spent signaling on- or off-carcass,

but they were more sensitive to variation in the quality of the so-

cial environment when signaling on the carcass and less sensitive

when signaling off the carcass. Thus, the reproductive tactics of
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Figure 4. Proportion of time spent signaling on (A) and off (B) the carcass in relation to the quality of the social environment experienced

by focal males (size relative to that of a competitor). Lines correspond to logistic regression models fitted to relative body size for each

selection regime.

N. vespilloides burying beetles are behaviorally plastic, primarily

mediated by individual differences in body size among males, and

there is genetic variation underlying this behavioral plasticity.

Population-level plasticity depends upon individual-level

plasticity, but the latter cannot be inferred from determining plas-

ticity at the level of the population (Nussey et al. 2007). This is

apparent in our study, as all behaviors quantified showed indi-

vidual differences in plasticity, with plasticity at the population

level absent for general activity on the carcass, but present for

signaling both on and off the carcass (Figs. 1–3). The absence of

population-level plasticity in on-carcass activity occurs because

small males reduced and large males increased the amount of

time on the carcass when a competitor was introduced. As a result

there was no overall change in behavior at the population level

(Fig. 1). In contrast, there was an overall population-level change

in on-carcass signaling, with males reducing the amount of time

signaling overall when a competitor was introduced. Nevertheless,

larger males signaled more than smaller males overall in both the

absence and presence of competitor, with a marginally nonsignif-

icant tendency for larger males to change their behavior less with

the addition of a competitor than small males did. In contrast,

although there was substantial individual-level and population-

level plasticity in off-carcass signaling behaviors, these were not

mediated by body-size effects. Focal males of all sizes responded

to the presence of a competitor by reducing to a very low level

the amount of time spent signaling off the carcass (Fig. 3C, D).

This change appeared to be largely a consequence of an overall

reduction in time spent signaling (as opposed to other behaviors)

in a social context, especially off-carcass, which is associated with

a satellite strategy (Eggert and Müller 1989b; Eggert 1992). Focal

males spent more time on the carcass than nonfocal competitor

males, presumably because the focal males were the resource

holders as they arrived first at the carcass (Hopwood et al. 2014;

Lee et al. 2014). As a result the effect of focal male size on signal-

ing behavior may have been partially obscured by this “residency”

effect. Nonetheless, our results show that the plasticity of male

signaling and overall activity in response to a change in the social

environment was complex, as found in other behavioral plasticity

studies (e.g., Westneat et al. 2011; Bretman et al. 2014), with

the size of the focal male involved playing an important role in

determining patterns of plasticity.

Our results confirm that relative competitive ability in bury-

ing beetles is largely determined by body size (Otronen 1988;

Hopwood et al. 2013, 2014; Lee et al. 2014), which is itself

primarily determined by parental response to variation in the

resources available to beetles during the larval stage (i.e., car-

cass size; Bartlett and Ashworth 1988; Eggert and Müller 1997).

Therefore, behavioral plasticity of signaling behavior in male

N. vespilloides also depends upon developmental plasticity of

individuals in response to variation in carcass size. This combina-

tion of current and past environments on the plasticity of behavior

is thought to be common, but is rarely shown (Dingemanse and

Wolf 2013).

Along with variation in the size of the resource required for

reproduction, the availability of carcasses in nature is stochastic,

and varies temporally and spatially (Eggert and Müller 1997).

Such temporal and spatial variation, in combination with com-

petition for resources, has been posited as an adaptive mecha-

nism underlying individual differences in plasticity independent

of state-dependent effects (Dingemanse and Wolf 2013). The ben-

efits of plasticity are thus negatively frequency dependent due to

costs of plasticity, which favors the coexistence of both plastic

and nonplastic individuals (Dingemanse and Wolf 2013). Beetles

that are more plastic in their behavior may do best when there

is high uncertainty about the social environment that individuals

are likely to experience in competition for carcasses, for example,
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but lose out to individuals that are less plastic when social en-

vironmental conditions are more predictable (e.g., when carcass

availability is either very low or very high). It is not known what

the costs of plasticity are (if any) for burying beetles, but more

generally the costs of maintaining a plastic response are expected

to lead to the evolution of reaction norms that increase the fit of

individuals to the more frequently occurring environments (Pigli-

ucci 2005; Nussey et al. 2007). Our results indicate that the social

environment that individuals experience depends largely on the

(relative) size of the focal beetles involved (see also Hopwood

et al. 2014).

The responsiveness of males to variation in the social envi-

ronment they experienced depended on genetic background, indi-

cating that behavioral plasticity evolves as a correlated response

to selection on mating behavior: We found that males showed

context-dependent social sensitivity in their signaling behavior in

relation to their selection regime. This suggests that selection for

increased investment in repeated mating rate, a paternity assur-

ance trait (Alcock 1994; House et al. 2008), leads to increased

social sensitivity in paternity assurance contexts. Under competi-

tion from rivals dominant, resource-holding males increase their

repeated mating rate (Sakaluk and Müller 2008). The greater re-

sponsiveness we see for on-carcass signaling behavior of males

from lines selected for high mating rate (i.e., selection for greater

investment in mating traits) to variation in the quality of the social

environment they experience is similar to that found by Sih et al.

(2014) for more active aggressive water striders (which mate at

higher frequencies than less active aggressive males) and is likely

to be adaptive, as the social environment experienced by burying

beetles in competition for carcasses is dynamic and unpredictable

(Hopwood et al. 2014). If selection favors increased investment

in behaviors that protect paternity, such as repeated mating, it im-

plies that competition for mates is likely to be strong. Given the

importance of body size in determining success in direct contests

over breeding resources in N. vespilloides, and the costs involved

in engaging in contests that are likely to be lost (Otronen 1988),

this may lead to fine-tuned social sensitivity in the behavioral

expression of reproductive tactics in relation to social context

(i.e., when protecting paternity): males need to accurately assess

their social situation to maximize their reproductive success (Bret-

man et al. 2011a). Such plasticity in mating behavior in response

to social context has also been demonstrated in other species.

For example, in the fruit-fly Drosophila melanogaster mating

duration of males depends on the level of competition experi-

enced (Bretman et al. 2009, 2012), and males use a variety of

different cues to detect rivals and modify responses, and thereby

enhance fitness (Bretman et al. 2011b). Our results are in line with

these results in Drosophila, but rather than using multiple cues

burying beetles appear to primarily rely on a single cue, relative

size difference, to influence reproductive tactics.

Conclusion
We provide novel evidence that alternative behavioral reproduc-

tive tactics are sensitive to social context in N. vespilloides, and

that this sensitivity is dependent upon variation in the genetic

background of individuals. In doing so our experiments reveal

social environment induced variation in the switch points and re-

action norms of the expression of behavioral reproductive tactics

in burying beetles: males selected for high investment in mating

traits that protect paternity were more plastic in their behavioral

response to variation in the quality of the social environment that

they experienced when they were dominant than when subor-

dinate. In contrast, males selected for low investment in mating

traits were more plastic in behavior when subordinate. This shows

that the plasticity and social sensitivity of behavioral reproductive

tactics can evolve in response to selection on investment in mating

traits: males that have more sex are more insecure.
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