54 research outputs found

    On the difference between updating the mixing matrix and updating the separation matrix

    Get PDF
    Raw data for our paper: "Interrelated chemical-microstructural-nanomechanical variations in the structural units of the cuttlebone of Sepia officinalis" DOI: 10.1063/1.499320

    Paired opposing leukocyte receptors recognizing rapidly evolving ligands are subject to homogenization of their ligand binding domains

    Get PDF
    Some leukocyte receptors come in groups of two or more where the partners share ligand(s) but transmit opposite signals. Some of the ligands, such as MHC class I, are fast evolving, raising the problem of how paired opposing receptors manage to change in step with respect to ligand binding properties and at the same time conserve opposite signaling functions. An example is the KLRC (NKG2) family, where opposing variants have been conserved in both rodents and primates. Phylogenetic analyses of the KLRC receptors within and between the two orders show that the opposing partners have been subject to post-speciation gene homogenization restricted mainly to the parts of the genes that encode the ligand binding domains. Concerted evolution similarly restricted is demonstrated also for the KLRI, KLRB (NKR-P1), KLRA (Ly49), and PIR receptor families. We propose the term merohomogenization for this phenomenon and discuss its significance for the evolution of immune receptors

    Comorbidity as a prognostic variable in multiple myeloma: comparative evaluation of common comorbidity scores and use of a novel MM–comorbidity score

    Get PDF
    Comorbidities have been demonstrated to affect progression-free survival (PFS) and overall survival (OS), although their impact in multiple myeloma (MM) patients is as yet unsettled. We (1) assessed various comorbidities, (2) compared established comorbidity indices (CIs; Charlson comorbidity index (CCI), hematopoietic cell transplantation-specific comorbidity index (HCT-CI)), Kaplan Feinstein (KF) and Satariano index (SI) and (3) developed a MM-CI (Freiburger comorbidity index, FCI) in 127 MM patients. Univariate analysis determined moderate or severe pulmonary disease (hazard ratio (HR): 3.5, P<0.0001), renal impairment (via estimated glomerular filtration rate (eGFR); HR: 3.4, P=0.0018), decreased Karnofsky Performance Status (KPS, HR: 2.7, P=0.0004) and age (HR: 2, P=0.0114) as most important variables for diminished OS. Through multivariate analysis, the eGFR ⩽30 ml/min/1.73m2, impaired lung function and KPS ⩽70% were significant for decreased OS, with HRs of 2.9, 2.8 and 2.2, respectively. Combination of these risk factors within the FCI identified significantly different median OS rates of 118, 53 and 25 months with 0, 1 and 2 or 3 risk factors, respectively, (P<0.005). In light of our study, comorbidities are critical prognostic determinants for diminished PFS and OS. Moreover, comorbidity scores are important treatment decision tools and will be valuable to implement into future analyses and clinical trials in MM

    Viremic HIV Infected Individuals with High CD4 T Cells and Functional Envelope Proteins Show Anti-gp41 Antibodies with Unique Specificity and Function

    Get PDF
    BACKGROUND: CD4 T-cell decay is variable among HIV-infected individuals. In exceptional cases, CD4 T-cell counts remain stable despite high plasma viremia. HIV envelope glycoprotein (Env) properties, namely tropism, fusion or the ability to induce the NK ligand NKp44L, or host factors that modulate Env cytopathic mechanisms may be modified in such situation. METHODS: We identified untreated HIV-infected individuals showing non-cytopathic replication (VL>10,000 copies/mL and CD4 T-cell decay<50 cells/µL/year, Viremic Non Progressors, VNP) or rapid progression (CD4 T-cells<350 cells/µL within three years post-infection, RP). We isolated full-length Env clones and analyzed their functions (tropism, fusion activity and capacity to induce NKp44L expression on CD4 cells). Anti-Env humoral responses were also analyzed. RESULTS: Env clones isolated from VNP or RP individuals showed no major phenotypic differences. The percentage of functional clones was similar in both groups. All clones tested were CCR5-tropic and showed comparable expression and fusogenic activity. Moreover, no differences were observed in their capacity to induce NKp44L expression on CD4 T cells from healthy donors through the 3S epitope of gp41. In contrast, anti- Env antibodies showed clear functional differences: plasma from VNPs had significantly higher capacity than RPs to block NKp44L induction by autologous viruses. Consistently, CD4 T-cells isolated from VNPs showed undetectable NKp44L expression and specific antibodies against a variable region flanking the highly conserved 3S epitope were identified in plasma samples from these patients. Conversely, despite continuous antigen stimulation, VNPs were unable to mount a broad neutralizing response against HIV. CONCLUSIONS: Env functions (fusion and induction of NKp44L) were similar in viremic patients with slow or rapid progression to AIDS. However, differences in humoral responses against gp41 epitopes nearby 3S sequence may contribute to the lack of CD4 T cell decay in VNPs by blocking the induction of NKp44L by gp41

    A study protocol for applying the co-creating knowledge translation framework to a population health study

    Get PDF
    BACKGROUND: Population health research can generate significant outcomes for communities, while Knowledge Translation (KT) aims to expressly maximize the outcomes of knowledge producing activity. Yet the two approaches are seldom explicitly combined as part of the research process. A population health study in Port Lincoln, South Australia offered the opportunity to develop and apply the co-KT Framework to the entire research process. This is a new framework to facilitate knowledge formation collaboratively between researchers and communities throughout a research to intervention implementation process. DESIGN: This study employs a five step framework (the co-KT Framework) that is formulated from engaged scholarship and action research principles. By following the steps a knowledge base will be cumulatively co-created with the study population that is useful to the research aims. Step 1 is the initiating of contact between the researcher and the study contexts, and the framing of the research issue, achieved through a systematic data collection tool. Step 2 refines the research issue and the knowledge base by building into it context specific details and conducting knowledge exchange events. Step 3 involves interpreting and analysing the knowledge base, and integrating evidence to inform intervention development. In Step 4 the intervention will be piloted and evaluated. Step 5 is the completion of the research process where outcomes for improvement will be instituted as regular practice with the facilitation of the community. In summary, the model uses an iterative knowledge construction mechanism that is complemented by external evidence to design interventions to address health priorities within the community. DISCUSSION: This is a systematic approach that operationalises the translational cycle using a framework for KT practice. It begins with the local context as its foundation for knowledge creation and ends with the development of contextually applicable interventions. It will be of interest to those involved in KT research, participatory action research, population health research and health care systems studies. The co-KT Framework is a method for embedding the principles of KT into all stages of a community-based research process, in which research questions are framed by emergent data from each previous stage.Kathryn Powell, Alison Kitson, Elizabeth Hoon, Jonathan Newbury, Anne Wilson and Justin Beilb

    PhiSiGns: an online tool to identify signature genes in phages and design PCR primers for examining phage diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phages (viruses that infect bacteria) have gained significant attention because of their abundance, diversity and important ecological roles. However, the lack of a universal gene shared by all phages presents a challenge for phage identification and characterization, especially in environmental samples where it is difficult to culture phage-host systems. Homologous conserved genes (or "signature genes") present in groups of closely-related phages can be used to explore phage diversity and define evolutionary relationships amongst these phages. Bioinformatic approaches are needed to identify candidate signature genes and design PCR primers to amplify those genes from environmental samples; however, there is currently no existing computational tool that biologists can use for this purpose.</p> <p>Results</p> <p>Here we present PhiSiGns, a web-based and standalone application that performs a pairwise comparison of each gene present in user-selected phage genomes, identifies signature genes, generates alignments of these genes, and designs potential PCR primer pairs. PhiSiGns is available at (<url>http://www.phantome.org/phisigns/</url>; <url>http://phisigns.sourceforge.net/</url>) with a link to the source code. Here we describe the specifications of PhiSiGns and demonstrate its application with a case study.</p> <p>Conclusions</p> <p>PhiSiGns provides phage biologists with a user-friendly tool to identify signature genes and design PCR primers to amplify related genes from uncultured phages in environmental samples. This bioinformatics tool will facilitate the development of novel signature genes for use as molecular markers in studies of phage diversity, phylogeny, and evolution.</p

    Between a Rock and a Hard Place: Habitat Selection in Female-Calf Humpback Whale (Megaptera novaeangliae) Pairs on the Hawaiian Breeding Grounds

    Get PDF
    The Au'au Channel between the islands of Maui and Lanai, Hawaii comprises critical breeding habitat for humpback whales (Megaptera novaeangliae) of the Central North Pacific stock. However, like many regions where marine mega-fauna gather, these waters are also the focus of a flourishing local eco-tourism and whale watching industry. Our aim was to establish current trends in habitat preference in female-calf humpback whale pairs within this region, focusing specifically on the busy, eastern portions of the channel. We used an equally-spaced zigzag transect survey design, compiled our results in a GIS model to identify spatial trends and calculated Neu's Indices to quantify levels of habitat use. Our study revealed that while mysticete female-calf pairs on breeding grounds typically favor shallow, inshore waters, female-calf pairs in the Au'au Channel avoided shallow waters (<20 m) and regions within 2 km of the shoreline. Preferred regions for female-calf pairs comprised water depths between 40–60 m, regions of rugged bottom topography and regions that lay between 4 and 6 km from a small boat harbor (Lahaina Harbor) that fell within the study area. In contrast to other humpback whale breeding grounds, there was only minimal evidence of typical patterns of stratification or segregation according to group composition. A review of habitat use by maternal females across Hawaiian waters indicates that maternal habitat choice varies between localities within the Hawaiian Islands, suggesting that maternal females alter their use of habitat according to locally varying pressures. This ability to respond to varying environments may be the key that allows wildlife species to persist in regions where human activity and critical habitat overlap
    corecore