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ABSTRACT

When the ICA source separation problem is solved by maximum
likelihood, a proper choice of the parameters is important. A com-
parison has been performed between the use of a mixing matrix
and the use of the separation matrix as parameters in the likeli-
hood. By looking at a general behavior of the cost function as
function of the mixing matrix or as function of the separation ma-
trix, it is explained and illustrated why it is better to select the
separation matrix as a parameter than to use the mixing matrix as
a parameter. The behavior of the natural gradient in the two cases
has been considered as well as the influence of pre-whitening.

1. INTRODUCTION

Consider the independent component analysis (ICA) problem, where
n sources s = [s1, . . . , sn]T are transmitted through a linear mix-
ing system and observed by n sensors. The mixing system is de-
scribed by the mixing matrix A, and the observations are denoted
by x = [x1, . . . , xn]T . This leads to the following equation

x = As, (1)

where only the observations x are known. The objective is to find
an estimate y of the original sources. This can be done by estimat-
ing the separation mixing matrix W = A−1, so that

y = Wx, (2)

Notice, the source estimates may be arbitrarily permuted or scaled.
The separation matrix can either be found directly or it can be
found by finding an estimate of the mixing matrix and afterwards
inverting the mixing matrix, provided that A is invertible. Here,
the classical likelihood source separation is considered.

2. LIKELIHOOD SOURCE SEPARATION

A possible method for solving the ICA problem is the maximum
likelihood principle [1]. The ML is closely related to other ICA
methods [2] such as the infomax method [3], or maximum a pos-
teriori MAP methods [4], [5]. In maximum likelihood source sep-
aration, the probability of a dataset given the parameters θ of the
model should be maximized. In this particular case, for the data
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x, the parameters are given by either the separation matrix W or
by the mixing matrix A. Thus, the likelihood can be expressed by
either

p(x|W) = | det W|
∏

m

pm(
∑

n

Wmnxn). (3)

or

p(x|A) =
1

| det A|
∏

m

pm(
∑

n

A−1
mnxn) (4)

Here, pm(
∑

n A−1
mnxn) = pm(

∑
n Wmnxn) = p(sm) is the

probability density function of the m’th source signal. For source
signals such as speech, a heavy tailed source distribution is chosen.
One way of maximizing the likelihood, is to minimize the negative
logarithm of the likelihood. Given the likelihood functions in (3)
and (4), the negative log likelihood functions are given in terms of
either W or in terms of A as:

L(W) = − ln | det(W)| −
∑

m

ln pm(
∑

n

Wmnxn) (5)

L(A) = ln | det(A)| −
∑

m

ln pm(
∑

n

A−1
mnxn). (6)

The respective gradients of (5) and (6) are given by [6]

∂L(W)

∂W
= −(I + zyT )AT (7)

∂L(A)

∂A
= WT (I + zyT ). (8)

Here z = ∂ ln pm(y)
∂y is a nonlinear mapping of y. Choosing z =

− tanh(y) corresponds to a probability density function for y pro-
portional to 1

cosh(y) . This pdf is heavier tailed than e.g. a Gaussian
distribution. I is the identity matrix. The gradient descent update
steps are then

W := W + µW (I + zyT )AT (9)

A := A − µAWT (I + zyT ), (10)

where µW and µA are learning rates. The learning rates can be
constant or they can vary as a function of the update step. These
algorithms may as well be made into iterative batch versions [7]
by averaging over the samples:

W := W + µW (I + E[zyT ])AT (11)

A := A − µAWT (I + E[yzT ]). (12)

Here, E[·] denotes the expectation and each sample is assumed to
be independent of the other samples.



3. COMPARISON BETWEEN THE LIKELIHOOD
FUNCTIONS

First consider the cost function L(A). In many source separation
problems, the values of the mixing matrix will be relatively close
to zero. Large values of A are not very likely. If it is assumed that
there is a limit on how large |Aij | can be, the n2-dimensional space
occupied by the cost function L(A) is limited by this maximum
value and it is possible to ”view” the whole cost function because
it only occupies a finite part of the A-space. Because the whole
cost function is within a finite space, the points where A is singular
exist in this space too. At a singular point, the cost function L(A)
becomes infinitely large. This makes it hard for gradient descent
algorithms to find a minima in a limited space with the existence
of infinite values. Now consider L(W). The space spanned by
the n × n elements in W is infinitely large because a limit in the
A-space doesn’t limit the W-space. Now consider the behavior of
the singular points in the A-space when they are mapped into the
W-space. Recall that the {i, j}’th element of an inverse matrix
can be written as

Wij = (A−1)ij =
adj(Aij)

det A
, (13)

where adj is the adjoint matrix. The adjoint matrix, can be found
by the following steps:

1. Remove the jth row and the ith column of (A)ij .

2. Find the determinant of the remaining part and

3. multiply by (−1)i+j .

This means that the A−1 is proportional to 1
det A . At the points

where A is singular, its determinant is 0. Thus, when A becomes
singular, W becomes infinitely large so all the points in the A-
space, where L(A) = ∞ are mapped into the W-space far away
from the origin and will therefore not disturb the gradient. Because
large values of A are unlikely, | det A| is prevented from becoming
too large and hereby, the determinant of W is prevented from being
close to 0. Hence, it is unlikely that W becomes singular.

4. SIMULATION EXAMPLE

The elements of a 3 × 3 mixing matrix have been drawn from
a Gaussian distribution with zero mean and a standard deviation
equal to one:

A =




0.8644 0.8735 −1.1027
0.0942 −0.4380 0.3962
−0.8519 −0.4297 −0.9649



 (14)

Hereby,

W = A−1 =




0.7872 1.7481 −0.1818
−0.3275 −2.3546 −0.5927
−0.5492 −0.4949 −0.6120



 (15)

In order to find E[zyT ], 3 × 1000 samples have been drawn from
the 1/ cosh-distribution1. The behavior of the two cost functions
L(A) and L(W) are considered as function of two parameters in A
and W, respectively while the other parameters are kept constant.

1Artificial data y which is 1
cosh

-distributed can be generated from uni-
formly distributed data as Y = ln | tan(X)|, where X is a uniformly
distributed random variable over the interval 0 < x < π.

Figure 1 and figure 2 show the cost function L(W) as function of
W11 and W21. Figure 1 shows the negative direction of the gra-
dients. The circle (◦) is placed at the correct values of W11 and
W12, which also can be seen in (15). It can be seen that the neg-
ative gradient directions are pointing toward the global minimum,
where the circle is located, or toward a local minimum. When con-
sidering figure 2, it can be seen that as L(W) is increased, when
|W11| or |W21| is increased. Now consider figure 3. Here L(A)
is shown as function of A11 and A21. Here too, the negative gra-
dient directions point toward the minima. In figure 4 the shape of
L(A) can be seen. The values, where A is close to singular can
clearly be seen and not far from these singular values, the global
minimum exists. Due to these huge differences in the cost func-
tion within a quite small range, it can be hard to find the correct
solution. This is also illustrated in figure 5. Here the value of
the two cost functions L(A) and L(W) are shown as function of
the number of iterations. The two learning rates are kept constant.
They have been chosen such that the cost functions are minimized
as fast as possible. The two learning rates has been found to be
µA = 0.03 and µW = 0.3. It can be seen that more iterations are
needed in order to find A than to find W. Further, it can be seen
that L(A) hasn’t reached the minimum after 200 iterations. Actu-
ally, after 200 iterations the sources are not separated at all when
L(A) is minimized. This can be explained by considering the cost
function in figure 4. At the areas around the minimum of L(A), the
cost function has almost the same value as at the minimum. This
makes it very hard to minimize, since the gradient decent steps
are very small. Even after 500 iterations, the separation quality
[8] of the three sources is only between 13 and 41 dB while the
separation quality of the sources, where the L(W) is minimized is
between 36 and 88 dB. Even though only L(A) and L(W) have
been investigated as function of two parameters in each matrix,
the shown behavior of L(A) and L(W) is believed to be a general
behavior for any of the parameters.

4.1. Natural Gradient learning

By using natural gradient descent [9] instead of gradient descent,
the cost functions may be minimized with a smaller number of
iterations. The natural gradients are obtained by multiplying the
gradient in (7) by WT W on the right side and the gradient in (8)
by AAT on the left side. Hereby, the natural gradient steps are
given by [10]

∆WNG = −(I + E[zyT ])W (16)

∆ANG = A(I + E[zyT ]). (17)

The natural gradient update steps have been used in the separation
problem. As it can be seen in figure 5, the separation performance
works equally well whether the natural gradient is used in the A-
domain or in the W-domain. Hereby, it seems that the natural gra-
dient is able to erase the convergence difference between updating
the algorithm in the A-domain and in the W-domain.

4.2. Pre-whitening

Pre-whitening of the data may simplify the separation problem.
After pre-whitening the data x is uncorrelated and

E[xxT ] = I (18)

The update equations (11), (12), (16) and (17) have been applied
in the case, where the data has been pre-whitened. Figure 6 shows
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Fig. 1. The cost function L(W) as function of W11 and W21. The
other elements in W are held constant by their true value. The
direction of the gradients are shown as well.
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Fig. 2. The cost function L(W) as function of W11 and W21.
As it can be seen, as the parameters in W are increased, L(W) is
increased too.

how the cost functions are minimized as function of the number of
iterations. As it can be seen, the convergence time is significantly
improved. Still, when A is updated in the A-domain without the
natural gradient, convergence is slow compared to updating in the
W-domain.
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Fig. 3. The cost function L(A) as function of A11 and A21. The
other elements in A are held constant by their true value. The
direction of the gradients are shown as well.

−2

−1

0

1

2

−2

−1

0

1

2
0

20

40

60

80

100

120

140

160

180

A
21

A
11

L(
A

)

Fig. 4. The cost function L(A) as function of A11 and A21. As it
can be seen, the cost function is dominated by a high ridge, where
the mixing matrix is close to singular, and some flat areas. Com-
pared to the cost function in figure 2, it is much harder to find the
global minima.

5. CONCLUSION

When performing source separation based on minimizing a cost
function by gradient descent, the shape of the cost function is im-
portant. By comparing the negative log likelihood cost function as
either function of the mixing matrix or as function of the separation
matrix, the contours of the cost functions are very different. Due
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Fig. 5. The cost function L(A) and L(W) as function of the num-
ber of iterations. The constant learning rates are selected in order
to minimize the number of iterations in order to ensure conver-
gence. After 200 iterations, only L(W) has been minimized. Even
though L(A) seems to have been minimized as well, A has not
been correctly estimated. Only a value of A somewhere at the flat
areas in figure 4 has been found, and much more iterations are
needed in order to find the correct value of A. Also, the mini-
mization as function of the iterative update by use of the natural
gradient is shown. Here, the cost functions are minimized by use
of a smaller number of iterations and fast convergence is achieved
for the update of A as well as W. By using the natural gradient,
the difference between updating the algorithm in the two domains
seems to have disappeared.

to these different behaviors of the cost functions, it has been found
that it is much easier to minimize the negative log likelihood, when
it is a function of the separation matrix than as function of the mix-
ing matrix. If the natural gradient is applied in the mixing domain,
it is able to cope with the difficult contour of the cost function. But
in problems, where the natural gradient is hard to find, a proper
choice of the parameters may be crucial. Also pre-whitening has
been considered. By pre-whitening the data before applying the
ICA algorithm, the convergence is significantly increased. The re-
sults may be generalized to more difficult problems such as e.g.
convolutive ICA.
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