860 research outputs found
Hematopoietic Stem/Progenitor Cells Express Functional Mitochondrial Energy-Dependent Cystic Fibrosis Transmembrane Conductance Regulator
Bone marrow-derived hematopoietic stem/progenitor cells (HSPCs) encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine. Cystic fibrosis (CF) is one of the diseases whose hope of cure relies on the successful application of cell-based gene therapy. This study was aimed at characterizing murine HSPCs on the basis of their bioenergetic competence and CF transmembrane conductance regulator (CFTR) expression. Positively immunoselected Sca-1(+) HSPCs encompassed 2 populations distinguished by their different size, Sca-1 expression and mitochondrial content. The smaller were the cells, the higher was Sca-1 expression and the lower was the intracellular density of functional mitochondria. Reverse transcription-polymerase chain reaction and western blotting revealed that HSPCs expressed CFTR mRNA and protein, which was also functional, as assessed by spectrofluorimetric and patch-clamp techniques. Inhibition of mitochondrial oxidative phosphorylation by oligomycin resulted in a 70% decrease of both the intracelluar adenosine triphosphate content and CFTR-mediated channel activity. Finally, HSPCs with lower Sca-1 expression and higher mitochondrial content displayed higher CFTR levels. Our findings identify 2 subpopulations in HSPCs and unveil a so-far unappreciated relationship between bioenergetic metabolism and CFTR in HSPC biology
Novel prokaryotic expression of thioredoxin-fused insulinoma associated protein tyrosine phosphatase 2 (IA-2), its characterization and immunodiagnostic application
Background
The insulinoma associated protein tyrosine phosphatase 2 (IA-2) is one of the immunodominant autoantigens involved in the autoimmune attack to the beta-cell in Type 1 Diabetes Mellitus. In this work we have developed a complete and original process for the production and recovery of the properly folded intracellular domain of IA-2 fused to thioredoxin (TrxIA-2ic) in Escherichia coli GI698 and GI724 strains. We have also carried out the biochemical and immunochemical characterization of TrxIA-2icand design variants of non-radiometric immunoassays for the efficient detection of IA-2 autoantibodies (IA-2A).
Results
The main findings can be summarized in the following statements: i) TrxIA-2ic expression after 3 h of induction on GI724 strain yieldedβββ10 mg of highly pure TrxIA-2ic/L of culture medium by a single step purification by affinity chromatography, ii) the molecular weight of TrxIA-2ic (55,358 Da) could be estimated by SDS-PAGE, size exclusion chromatography and mass spectrometry, iii) TrxIA-2ic was properly identified by western blot and mass spectrometric analysis of proteolytic digestions (63.25 % total coverage), iv) excellent immunochemical behavior of properly folded full TrxIA-2ic was legitimized by inhibition or displacement of [35S]IA-2 binding from IA-2A present in Argentinian Type 1 Diabetic patients, v) great stability over time was found under proper storage conditions and vi) low cost and environmentally harmless ELISA methods for IA-2A assessment were developed, with colorimetric or chemiluminescent detection.
Conclusions
E. coli GI724 strain emerged as a handy source of recombinant IA-2ic, achieving high levels of expression as a thioredoxin fusion protein, adequately validated and applicable to the development of innovative and cost-effective immunoassays for IA-2A detection in most laboratories.Fil: Guerra, Luciano Lucas. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y BioquΓmica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Faccinetti, Natalia Ines. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y BioquΓmica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Trabucchi, Aldana. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y BioquΓmica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Rovitto, Bruno David. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y BioquΓmica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Sabljic, Adriana Victoria. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y BioquΓmica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Poskus, Edgardo. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y BioquΓmica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Iacono, Ruben Francisco. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y BioquΓmica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Valdez, Silvina Noemi. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y BioquΓmica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; Argentin
Recommended from our members
Optimal Risk Transfers in Insurance Groups
Optimal risk transfers are derived within an insurance group consisting of two separate legal entities, operating under potentially different regulatory capital requirements and capital costs. Consistent with regulatory practice, capital requirements for each entity are computed by either a value-at-risk or an expected shortfall risk measure. The optimality criterion consists of minimising the risk-adjusted value of the total group liabilities, with valuation carried out using a cost-of-capital approach. The optimisation problems are analytically solved and it is seen that optimal risk transfers often involve the transfer of tail risk (unlimited reinsurance layers) to the more weakly regulated entity. We show that, in the absence of a capital requirement for the credit risk that specifically arises from the risk transfer, optimal risk transfers achieve capital efficiency at the cost of increasing policyholder deficit. However, when credit risk is properly reflected in the capital requirement, incentives for tail-risk transfers vanish and policyholder welfare is restored
Age-Related Central Auditory Processing Disorder, MCI, and Dementia in an Older Population of Southern Italy
Objective: We explored the associations of age-related central auditory processing disorder (CAPD) with mild cognitive impairment (MCI) and dementia in an older population-based cohort in Apulia, Southern Italy (GreatAGE Study). /
Study Design: Cross-sectional data from a population-based study. /
Setting: Castellana Grotte, Bari, Italy. /
Subjects and Methods: Between 2013 and 2018, MCI, dementia, age-related CAPD (no disabling hearing loss and 65 years. /
Results: The prevalences of age-related CAPD, MCI, and dementia were 14.15%, 15.79%, and 3.58%, respectively. Among the subjects with MCI and dementia, 19.61% and 42.37% had age-related CAPD. In the regressive models, age-related CAPD was associated with MCI (odds ratio, 1.50; 95% CI, 1.01-2.21) and dementia (odds ratio, 2.23; 95% CI, 1.12-4.42). Global cognition scores were positively associated with increasing SSI-ICM scores in linear models. All models were adjusted for demographics and metabolic serum biomarkers. /
Conclusion: The tight association of age-related CAPD with MCI and dementia suggests the involvement of central auditory pathways in neurodegeneration, but it is not clear which is the real direction of this association. However, CAPD is a possible diagnostic marker of cognitive dysfunction in older patients
Dynamical Patterns of Cattle Trade Movements
Despite their importance for the spread of zoonotic diseases, our
understanding of the dynamical aspects characterizing the movements of farmed
animal populations remains limited as these systems are traditionally studied
as static objects and through simplified approximations. By leveraging on the
network science approach, here we are able for the first time to fully analyze
the longitudinal dataset of Italian cattle movements that reports the mobility
of individual animals among farms on a daily basis. The complexity and
inter-relations between topology, function and dynamical nature of the system
are characterized at different spatial and time resolutions, in order to
uncover patterns and vulnerabilities fundamental for the definition of targeted
prevention and control measures for zoonotic diseases. Results show how the
stationarity of statistical distributions coexists with a strong and
non-trivial evolutionary dynamics at the node and link levels, on all
timescales. Traditional static views of the displacement network hide important
patterns of structural changes affecting nodes' centrality and farms' spreading
potential, thus limiting the efficiency of interventions based on partial
longitudinal information. By fully taking into account the longitudinal
dimension, we propose a novel definition of dynamical motifs that is able to
uncover the presence of a temporal arrow describing the evolution of the system
and the causality patterns of its displacements, shedding light on mechanisms
that may play a crucial role in the definition of preventive actions
Dynamical Patterns of Cattle Trade Movements
Despite their importance for the spread of zoonotic diseases, our
understanding of the dynamical aspects characterizing the movements of farmed
animal populations remains limited as these systems are traditionally studied
as static objects and through simplified approximations. By leveraging on the
network science approach, here we are able for the first time to fully analyze
the longitudinal dataset of Italian cattle movements that reports the mobility
of individual animals among farms on a daily basis. The complexity and
inter-relations between topology, function and dynamical nature of the system
are characterized at different spatial and time resolutions, in order to
uncover patterns and vulnerabilities fundamental for the definition of targeted
prevention and control measures for zoonotic diseases. Results show how the
stationarity of statistical distributions coexists with a strong and
non-trivial evolutionary dynamics at the node and link levels, on all
timescales. Traditional static views of the displacement network hide important
patterns of structural changes affecting nodes' centrality and farms' spreading
potential, thus limiting the efficiency of interventions based on partial
longitudinal information. By fully taking into account the longitudinal
dimension, we propose a novel definition of dynamical motifs that is able to
uncover the presence of a temporal arrow describing the evolution of the system
and the causality patterns of its displacements, shedding light on mechanisms
that may play a crucial role in the definition of preventive actions
Integration of decision support systems to improve decision support performance
Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes
Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.
Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus
Interrupting Malaria Transmission: Quantifying the Impact of Interventions in Regions of Low to Moderate Transmission
Malaria has been eliminated from over 40 countries with an additional 39 currently planning for, or committed to, elimination. Information on the likely impact of available interventions, and the required time, is urgently needed to help plan resource allocation. Mathematical modelling has been used to investigate the impact of various interventions; the strength of the conclusions is boosted when several models with differing formulation produce similar data. Here we predict by using an individual-based stochastic simulation model of seasonal Plasmodium falciparum transmission that transmission can be interrupted and parasite reintroductions controlled in villages of 1,000 individuals where the entomological inoculation rate is <7 infectious bites per person per year using chemotherapy and bed net strategies. Above this transmission intensity bed nets and symptomatic treatment alone were not sufficient to interrupt transmission and control the importation of malaria for at least 150 days. Our model results suggest that 1) stochastic events impact the likelihood of successfully interrupting transmission with large variability in the times required, 2) the relative reduction in morbidity caused by the interventions were age-group specific, changing over time, and 3) the post-intervention changes in morbidity were larger than the corresponding impact on transmission. These results generally agree with the conclusions from previously published models. However the model also predicted changes in parasite population structure as a result of improved treatment of symptomatic individuals; the survival probability of introduced parasites reduced leading to an increase in the prevalence of sub-patent infections in semi-immune individuals. This novel finding requires further investigation in the field because, if confirmed, such a change would have a negative impact on attempts to eliminate the disease from areas of moderate transmission
The global distribution of the Duffy blood group
Blood group variants are characteristic of population groups, and can show conspicuous geographic patterns. Interest in the global prevalence of the Duffy blood group variants is multidisciplinary, but of particular importance to malariologists due to the resistance generally conferred by the Duffy-negative phenotype against Plasmodium vivax infection. Here we collate an extensive geo-database of surveys, forming the evidence-base for a multi-locus Bayesian geostatistical model to generate global frequency maps of the common Duffy alleles to refine the global cartography of the common Duffy variants. We show that the most prevalent allele globally was FY*A, while across sub-Saharan Africa the predominant allele was the silent FY*BES variant, commonly reaching fixation across stretches of the continent. The maps presented not only represent the first spatially and genetically comprehensive description of variation at this locus, but also constitute an advance towards understanding the transmission patterns of the neglected P. vivax malaria parasite
- β¦