136 research outputs found

    In vivo and in vitro expression of steroid-converting enzymes in human breast tumours: associations with interleukin-6

    Get PDF
    Enzymes modulating local steroid availability play an important role in the progression of human breast cancer. These include isoforms of 17β-hydroxysteroid dehydrogenase (17-HSD), aromatase and steroid sulphatase (STS). The aim of this study was to investigate the expression, by reverse transcription polymerase chain reaction, of 17-HSD types I–IV, aromatase and steroid STS in a series of 51 human breast tumour biopsies and 22 primary cultures of epithelial and stromal cells derived from these tumours, giving a profile of the steroid-regulating network for individual tumours. Correlations between enzyme expression profiles and expression of the interleukin (IL)-6 gene were also sought. All except one tumour expressed at least one isoform of 17-HSD, either alone or in combination with aromatase and STS. Expression of 17-HSD isoforms I–IV were observed in nine tumours. Of the 15 tumours which expressed three isoforms, a combination of 17-HSD II, III and IV was most common (6/15 samples). The majority of tumours (n = 17) expressed two isoforms of 17-HSD with combinations of 17-HSD II and IV predominant (7/17 samples). Eight tumours expressed a single isoform and of these, 17-HSD I was in the majority (5/8 samples). In primary epithelial cultures, enzyme expression was ranked: HSD I (86%) > STS (77%) > HSD II (59%) > HSD IV (50%) = aromatase (50%) > HSD III (32%). Incidence of enzyme expression was generally reduced in stromal cultures which were ranked: HSD I (68%) > STS (67%) > aromatase (48%) > HSD II (43%) > HSD IV (28%) > HSD III (19%). Expression of IL-6 was associated with tumours that expressed ≥ 3 steroid-converting enzymes. These tumours were of higher grade and tended to come from patients with family history of breast cancer. In conclusion, we propose that these enzymes work in tandem with cytokines thereby providing sufficient quantities of bioactive oestrogen from less active precursors which stimulates tumour growth. © 1999 Cancer Research Campaig

    Identification and validation of DOCK4 as a potential biomarker for risk of bone metastasis development in patients with early breast cancer.

    Get PDF
    Skeletal metastasis occurs in around 75% of advanced breast cancers, with the disease incurable once cancer cells disseminate to bone, but there remains an unmet need for biomarkers to identify patients at high risk of bone recurrence. This study aimed to identify such a biomarker and to assess its utility in predicting response to adjuvant zoledronic acid. We used quantitative proteomics (SILAC-MS), to compare protein expression in a bone-homed variant (BM1) of the human breast cancer cell line MDA-MB-231 with parental non-bone-homing cells to identify novel biomarkers for risk of subsequent bone metastasis in early breast cancer. SILAC-MS showed that Dedicator of cytokinesis protein 4 (DOCK4) was upregulated in bone-homing BM1 cells, confirmed by Western blotting. BM1 cells also had enhanced invasive ability compared with parental cells which could be reduced by DOCK4-shRNA. In a training Tissue Microarray (TMA) comprising 345 patients with early breast cancer, immunohistochemistry followed by Cox regression revealed that high DOCK4 expression correlated with histological grade (p=0.004) but not oestrogen receptor status (p=0.19) or lymph node involvement (p=0.15). A clinical validation TMA used tissue samples and the clinical database from the large AZURE adjuvant study (n=689). Adjusted Cox regression analyses showed that high DOCK4 expression in the control arm (no zoledronic acid) was significantly prognostic for first recurrence in bone (HR 2.13, 95%CI 1.06-4.30, p=0.034). No corresponding association was found in patients who received zoledronic acid (HR 0.812, 95%CI 0.176-3.76, p=0.790), suggesting that treatment with zoledronic acid may counteract the higher risk for bone relapse from high DOCK4-expressing tumours. High DOCK4 expression was not associated with metastasis to non-skeletal sites when these were assessed collectively. In conclusion, high DOCK4 in early breast cancer is significantly associated with aggressive disease and with future bone metastasis and is a potentially useful biomarker for subsequent bone metastasis risk

    Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    Get PDF
    INTRODUCTION Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years

    Evaluation of the current knowledge limitations in breast cancer research: a gap analysis

    Get PDF
    BACKGROUND A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients. METHODS Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action. RESULTS Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds). CONCLUSION Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care

    The stress of starvation: glucocorticoid restraint of beta cell development

    Get PDF
    Developmental insults during gestation, such as under-nutrition, are known to restrict the number of beta cells that form in the fetal pancreas and are maintained in adulthood, leading to increased risk of type 2 diabetes. There are now substantial data indicating that glucocorticoids mediate this effect of under-nutrition on beta cell mass and that even at physiological levels they restrain fetal beta cell development in utero. There are emerging clues that this occurs downstream of endocrine commitment by neurogenin 3 but prior to terminal beta cell differentiation. Deciphering the precise mechanism will be important as it might unveil new pathways by which to manipulate beta cell mass that could be exploited as novel therapies for patients with diabetes

    SMAC Mimetic BV6 Induces Cell Death in Monocytes and Maturation of Monocyte-Derived Dendritic Cells

    Get PDF
    Background: Compounds mimicking the inhibitory effect of SMAC / DIABLO on X-linked inhibitor of apoptosis (XIAP) have been developed with the aim to achieve sensitization for apoptosis of tumor cells resistant due to deregulated XIAP expression. It turned out that SMAC mimetics also have complex effects on the NFkB system and TNF signaling. In view of the overwhelming importance of the NFkB transcription factors in the immune system, we analyzed here the effects of the SMAC mimetic BV6 on immune cells. Principal Findings: BV6 induced apoptotic and necrotic cell death in monocytes while T-cells, dendritic cells and macrophages were largely protected against BV6-induced cell death. In immature dendritic cells BV6 treatment resulted in moderate activation of the classical NFkB pathway, but it also diminished the stronger NFkB-inducing effect of TNF and CD40L. Despite its inhibitory effect on TNF- and CD40L signaling, BV6 was able to trigger maturation of immature DCs as indicated by upregulation of CD83, CD86 and IL12. Significance: The demonstrated effects of SMAC mimetics on immune cells may complicate the development of tumor therapeutic concepts based on these compounds but also arise the possibility to exploit them for the development of immune stimulatory therapies

    Impairment of Rat Fetal Beta-Cell Development by Maternal Exposure to Dexamethasone during Different Time-Windows

    Get PDF
    Glucocorticoids (GCs) take part in the direct control of cell lineage during the late phase of pancreas development when endocrine and exocrine cell differentiation occurs. However, other tissues such as the vasculature exert a critical role before that phase. This study aims to investigate the consequences of overexposure to exogenous glucocorticoids during different time-windows of gestation for the development of the fetal endocrine pancreas

    A divergent role for estrogen receptor-beta in node-positive and node-negative breast cancer classified according to molecular subtypes: an observational prospective study

    Get PDF
    Introduction: Estrogen receptor-alpha (ER-alpha) and progesterone receptor (PgR) are consolidated predictors of response to hormonal therapy (HT). In contrast, little information regarding the role of estrogen receptor-beta (ER-beta) in various breast cancer risk groups treated with different therapeutic regimens is available. In particular, there are no data concerning ER-beta distribution within the novel molecular breast cancer subtypes luminal A (LA) and luminal B (LB), HER2 (HS), and triple-negative (TN). Methods: We conducted an observational prospective study using immunohistochemistry to evaluate ER-beta expression in 936 breast carcinomas. Associations with conventional biopathological factors and with molecular subtypes were analyzed by multiple correspondence analysis (MCA), while univariate and multivariate Cox regression analysis and classification and regression tree analysis were applied to determine the impact of ER-beta on disease-free survival in the 728 patients with complete follow-up data. Results: ER-beta evenly distributes (55.5%) across the four molecular breast cancer subtypes, confirming the lack of correlation between ER-beta and classical prognosticators. However, the relationships among the biopathological factors, analyzed by MCA, showed that ER-beta positivity is located in the quadrant containing more aggressive phenotypes such as HER2 and TN or ER-alpha/PgR/Bcl2- tumors. Kaplan-Meier curves and Cox regression analysis identified ER-beta as a significant discriminating factor for disease-free survival both in the node-negative LA (P = 0.02) subgroup, where it is predictive of response to HT, and in the node-positive LB (P = 0.04) group, where, in association with PgR negativity, it conveys a higher risk of relapse. Conclusion: Our data indicated that, in contrast to node-negative patients, in node-positive breast cancer patients, ER-beta positivity appears to be a biomarker related to a more aggressive clinical course. In this context, further investigations are necessary to better assess the role of the different ER-beta isoforms
    corecore