78 research outputs found

    Measuring Enzymatic HIV-1 Susceptibility to Two Reverse Transcriptase Inhibitors as a Rapid and Simple Approach to HIV-1 Drug-Resistance Testing

    Get PDF
    Simple and cost-effective approaches for HIV drug-resistance testing are highly desirable for managing increasingly expanding HIV-1 infected populations who initiate antiretroviral therapy (ART), particularly in resource-limited settings. Non-nucleoside reverse trancriptase inhibitor (NNRTI)-based regimens with an NRTI backbone containing lamivudine (3TC) or emtricitabine (FTC) are preferred first ART regimens. Failure with these drug combinations typically involves the selection of NNRTI- and/or 3TC/FTC- resistant viruses. Therefore, the availability of simple assays to measure both types of drug resistance is critical. We have developed a high throughput screening test for assessing enzymatic resistance of the HIV-1 RT in plasma to 3TC/FTC and NNRTIs. The test uses the sensitive “Amp-RT” assay with a newly-developed real-time PCR format to screen biochemically for drug resistance in single reactions containing either 3TC-triphosphate (3TC-TP) or nevirapine (NVP). Assay cut-offs were defined based on testing a large panel of subtype B and non-subtype B clinical samples with known genotypic profiles. Enzymatic 3TC resistance correlated well with the presence of M184I/V, and reduced NVP susceptibility was strongly associated with the presence of K103N, Y181C/I, Y188L, and G190A/Q. The sensitivity and specificity for detecting resistance were 97.0% and 96.0% in samples with M184V, and 97.4% and 96.2% for samples with NNRTI mutations, respectively. We further demonstrate the utility of an HIV capture method in plasma by using magnetic beads coated with CD44 antibody that eliminates the need for ultracentifugation. Thus our results support the use of this simple approach for distinguishing WT from NNRTI- or 3TC/FTC-resistant viruses in clinical samples. This enzymatic testing is subtype-independent and can assist in the clinical management of diverse populations particularly in resource-limited settings

    Determination of sodium fatty acid in soap Formulation Using Fourier Transform Infrared (FTIR) spectroscopy and multivariate calibrations.

    Get PDF
    Fourier Transform Infrared (FTIR) spectroscopy using an attenuated total reflectance (ATR) accessory has been investigated as a method for the determination of sodium-fatty acid (sodium-FA) in soap formulations. Multivariate calibrations namely partial least squares regression (PLS) and principle component regression (PCR) were developed for the prediction of sodium-FA using spectral ranges on the basis of relevant IR absorption bands related to sodium-FA. The sodium-FA content in soap formulations was predicted accurately at wavenumbers of 1,570–1,550 cm−1, which is specific for RCOO− Na+ vibration. The PLS method was found to be a consistently better predictor when both PLS and principal component regression (PCR) analyses were used for quantification of sodium-FA. Furthermore, FTIR spectroscopy can be an alternative technique to American oil Chemist Society methods which use a titrimetric technique because FTIR offers rapid, easy sample preparation and is friendly to the environment

    Unexplored olive cultivars from the Valencian Community (Spain): some chemical characteristics as a valorization strategy

    Get PDF
    [EN] The olive processing industry has till date been dominated by a small group of cultivars, leading to the possibility of some olive cultivars becoming extinct in the near future. In this study, we determined the composition of some chemical components in the olive oils from 31 minor olive cultivars of the Valencian Community. Our main aim was to identify suitable cultivars, which could produce differentiated olive oils, thus aiming towards their valorization. The average oil content of minor olive cultivars was found to be good, with some of them reporting approximately 60% (dry basis). On average, the total phenolic content was 229mg kg(-1), with cv. Mas Blanc reporting the highest content (570mg kg(-1)). Among the various tocopherols found in olives, -tocopherol was the main constituent, with a maximum concentration of 290.6mg kg(-1). Linoleic acid was the main polyunsaturated fatty acid and varied between 3.4% (cv. Del Pomet) and 16.9% (cv. Blanqueta Enguera). Special attention needs to be paid to the composition of sterols, since some olive oils exceeded the limits established for some sterols by the current European legislation. Some of the cultivars studied were highly productive, and originated differentiated olive oils with a rich composition of antioxidants and essential fatty acids. In some cases, these beneficial compounds were higher than those of commercial oils obtained from the most common cultivars worldwide. These results could contribute to the commercial exploitation of some of the studied cultivars.Salazar-GarcĂ­a, DC.; Malheiro, R.; Pereira, JA.; LĂłpez- CortĂ©s, I. (2019). Unexplored olive cultivars from the Valencian Community (Spain): some chemical characteristics as a valorization strategy. European Food Research and Technology. 245(2):325-334. https://doi.org/10.1007/s00217-018-3164-7S3253342452Avidan B, Birger R, Abed-El-Hadi F, Salmon O, Hekster O, Friedman Y, Lavee S (2011) Adopting vigorous olive cultivars to high density hedgerow cultivation by soil applications of uniconazole, a gibberellin synthesis inhibitor. Span J Agric Res 9:821–830Barranco D, Rallo L (2000) Olive cultivars in Spain. HortTechnology 10:107–110Navero DB (2000) World catalogue of olive varieties. International Olive Oil Council, MadridBorges TH, Pereira JA, Cabrera-Vique C, Lara L, Oliveira AF, Seiquer I (2017) Characterization of Arbequina virgin olive oils produced in different regions of Brazil and Spain: physicochemical properties, oxidative stability and fatty acid profile. Food Chem 215:454–462Laroussi-Mezghani S, Le DrĂ©au Y, Molinet J, Hammami M, Grati-Kamoun N, Artaud J (2016) Biodiversity of Tunisian virgin olive oils: varietal origin classification according to their minor compounds. Eur Food Res Technol 242:1087–1099Kosma I, Vavoura M, Kontakos S, Karabagias I, Kontominas M, Apostolos K, Badeka A (2016) Characterization and classification of extra virgin olive oil from five less well-known Greek olive cultivars. J Am Oil Chem Soc 93:837–848Reboredo-RodrĂ­guez P, GonzĂĄlez-Barreiro C, Cancho-Grande B, Valli E, Bendini A, Toschi TG, Simal-Gandara J (2016) Characterization of virgin olive oils produced with autochthonous Galician varieties. Food Chem 212:162–171Kyçyk O, Aguillera MP, Gaforio JJ, JimĂ©nez A, BeltrĂĄn G (2016) Sterol composition of virgin olive oil of forty-three olive cultivars from the World Collection Olive Germplasm Bank of Cordoba. J Sci Food Agric 96:4143–4150Ruiz-DomĂ­nguez ML, RaigĂłn MD, Prohens J (2013) Diversity for olive oil composition in a collection of varieties from the region of Valencia (Spain). Food Res Int 54:1941–1949Mateos R, Dominguez MM, Espartero JL, Cert A (2003) Antioxidant effect of phenolic compounds, α-tocopherol, and other minor components in virgin olive oil. J Agric Food Chem 51:7170–7175Hermoso M, Uceda M, GarcĂ­a A, Morales B, Frias ML, FernĂĄndez A (1991) ElaboraciĂłn de Aceite de Calidad. Consejeria de Agricultura y Pesca, SevillaMalheiro R, Rodrigues N, Bissaro C, Leimann F, Casal S, Ramalhosa E, Pereira JA (2017) Improvement of sensorial and volatile profiles of olive oil by addition of olive leaves. Eur J Lipid Sci Technol 119:1700177Commission Delegated Regulation (EU) 2016/2095 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off J Eur Union L:326Slover HT, Thompson RH, Merola GV (1983) Tocopherol and sterol determination by capillary gas chromatography. J Am Oil Chem Soc 60:1524–1528Sousa A, Casal S, Malheiro R, Lamas H, Bento A, Pereira JA (2015) Aromatized olive oil: Influence of flavouring in quality, composition, stability, antioxidants, and antiradical potential. LWT Food Sci Technol 60:22–28LimĂłn P, Malheiro R, Casal S, AciĂ©n-FernĂĄndez FG, FernĂĄndez-Sevilla JM, Rodrigues N, Cruz R, Bermejo R, Pereira JA (2015) Improvement of stability and carotenoids fraction of virgin olive oil by addition of microalgae Scenedesmus almeriensis extracts. Food Chem 175:203–211Motilva MJ, Tovar MJ, Romero MP, Alegre S, Girona J (2000) Influence of regulated deficit irrigation strategies applied to olive trees (Arbequina cultivar) on oil yield and oil composition during the fruit ripening period. J Sci Food Agric 80:2037–2043Palese AM, Nuzzo V, Favati F, Pietrafesa A, Celano G, Xiloyannis C (2010) Effects of water deficit on the vegetative response, yield and oil quality of olive trees (Olive europaea L., cv Coratina) grown under intensive cultivation. Sci Hortic 125:222–229Allalout A, KrichĂšn D, Methenni K, Taamalli A, Oueslati I, Daoud D, Zarrouk M (2009) Characterization of virgin olive oil from Super Intensive Spanish and Greek varieties grown in northern Tunisia. Sci Hortic 120:77–83Simopoulos AP, DiNicolantonio JJ (2016) The importance of a balanced ω-6 to ω-3 ratio in the prevention and management of obesity. Open Heart 3:e000385Marongui B, Özcan MM, Rosa A, Dessi MA, Piras A, AlJuhaimi F (2015) Monitoring of the fatty acid compositions of some olive oils. Riv Ital Sostanze Grasse 92:39–42Paiva-Martins F, Kiritsakis A (2017) Olive fruit and olive oil composition and their functionalcompounds. In: Kiritsakis A, Shahidi F (eds) Olives and olive oil as functional foods. Bioactivity, chemistry and processing. Wiley, Hoboken, pp 81–116Shahzad N, Khan W, Shadab MD, Ali A, Saluja SS, Sharma S, Al-Allaf FA, Abduljaleel Z, Ibrahim IAA (2017) Phytosterols as a natural anticancer agent: current status and future perspective. Biomed Pharmacol 88:786–794Covas MI, Ruiz-GutiĂ©rrez V, de la Torre R, Kafatos A, Lamuela-RaventĂłs RM, Osada J, Owen RW, Visioli F (2006) Minor components of olive oil: evidence to date of health benefits in humans. Nutr Rev 64:S20–S30Pirodi M, Albini A, Fabiani R, Giovannelli L, Luceri C, Natella F, Rosignoli P, Rossi T, Taticchi A, Servili M, Galli F (2017) Nutrigenomics of extra-virgin olive oil: a review. Biofactors 43:17–41Franco MN, Galeano-DĂ­az T, SĂĄnchez J, De Miguel C, MartĂ­n-Vertedor D (2014) Total phenolic compounds and tocopherols profiles of seven olive oil varieties grown in the South-West of Spain. J Oleo Sci 63:115–125Aparicio R, Roda L, Albi MA, GutiĂ©rrez F (1999) Effect of various compounds on virgin olive oil stability measured by Rancimat. J Agric Food Chem 47:4150–4155Bullota S, Celano M, Lepore SM, Montalcini T, Pujia A, Russo D (2014) Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: focus on protection against cardiovascular and metabolic diseases. J Transl Med 12:1–9Krychene D, Salvador MD, Fregapane G (2015) Stability of virgin olive oil phenolic compounds during long-term storage (18 months) at temperatures of 5–50 °C. J Agric Food Chem 63:6779–6786Aparicio-Ruiz R, GarcĂ­a-GonzĂĄlez DL, Oliver-Pozo C, Tena N, Morales MT, Aparicio A (2016) Phenolic profile of virgin olive oils with and without sensory defects: oils with non-oxidative defects exhibit a considerable concentration of phenols. Eur J Lipid Sci Technol 118:299–307Yorulmaz A, Poyrazoğlu ES, Özcan MM, Tekin A (2012) Phenolic profiles of Turkish olives and olive oils. Eur J Lipid Sci Technol 14:1083–1093Arslan A, Özcan MM (2011) Phenolic profile and antioxidant activity of olive fruits of the Turkish variety “Sarıulak” from different locations. Grasas Aceites 64:453–461Dağdelen A, TĂŒmen G, Özcan MM, DĂŒndar E (2013) Phenolics profiles of olive fruits (Olea europaea L.) and oils from Ayvalık, Domat and Gemlik varieties at different ripening stages. Food Chem 136:41–45Malheiro R, Rodrigues N, Pereira JA (2015). In: Boskou D (ed) Olive and olive oil bioactive constituents. AOCS Press, UrbanaCriado MN, MorellĂł JR, Motilva MJ, Romero MP (2004) Effect of growing area on pigment and phenolic fractions of virgin olive oils of the Arbequina variety in Spain. J Am Oil Chem Soc 81:633–640GĂłmez-Rico A, Fregapane G, Salvador MD (2008) Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res Int 41:433–440Parkinson L, Cicerale S (2016) The health benefiting mechanisms of virgin olive oil phenolic compounds. Molecules 21:1734Lerma-GarcĂ­a MJ, Herrero-MartĂ­nez JM, Ramis-Ramos G, SimĂł-Alfonso EF (2008) Prediction of the genetic variety of Spanish extra virgin olive oils using fatty acid and phenolic compound profiles established by direct infusion mass spectrometry. Food Chem 108:1142–1148Luna G, Morales MT, Aparicio R (2006) Characterisation of 39 varietal virgin olive oils by their volatile compositions. Food Chem 98:243–252Arslan A, Özcan MM (2011) Influence of growing area and harvest date on the organic acid composition of olive fruits from Gemlik variety. Sci Hortic 130:633–64

    Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue

    Get PDF
    Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.This work was co-financed by FCT/MEC and FEDER under Program PT2020 (Project UID/EQU/50020/2013); by Fundacao para a Ciencia e Tecnologia under the strategic funding of UID/BIO/04469/2013 unit; and by Project POCTEP through Project RED/AGROTEC-Experimentation network and transfer for development of agricultural and agro industrial sectors between Spain and Portugal

    Potential Impact of Antiretroviral Chemoprophylaxis on HIV-1 Transmission in Resource-Limited Settings

    Get PDF
    Background. The potential impact of pre-exposure chemoprophylaxis (PrEP) an heterosexual transmission of HIV-1 infection in resource-limited settings is uncertain. Methodology/Principle Findings. A deterministic mathematical model was used to simulate the effects of antiretroval PreP on an HIV-1 epidemic in sub-Saharan Africa under different scenarios (optimistic neutral and pessimistic) both with and without sexual disinhibition. Sensitivity analyses were used to evaluate the effect of uncertainty in input parameters on model output and included calculation of partial rank correlations and standardized rank regressions. In the scenario without sexual disinhibition after PrEP initiation, key parameters influencing infections prevented were effectiveness of PrEP (partial rank correlation coefficient (PRCC) = 0.94), PrEP discontinuation rate (PRCC=-0.94), level of coverage (PRCC=0.92), and time to achieve target coverage (PRCC=-082). In the scenario with sexual disinhibition, PrEP effectiveness and the extent of sexual disinhibition had the greatest impact on prevention. An optimistic scenario of PrEP with 90% effectiveness and 75% coverage of the general population predicted a 74% decline in cumulative HIV-1 infections after 10 years, and a 28.8% decline with PrEP targeted to the highest risk groups (16% of the population). Even With a 100% increase in at-risk behavior from sexual disinhibition, a beneficial effect (23.4%-62.7% decrease in infections) was seen with 90% effective PrEP across a broad range of coverage (25%-75%). Similar disinhibition led to a rise in infections with lower effectiveness of PrEP (≀50%). Conclusions/Significance. Mathematical modeling supports the potential public health benefit of PrEP. Approximately 2.7 to 3.2 million new HIV-1 infections could be averaged in southern sub-Saharan Africa over 10 years by targeting PrEP (having 90% effectiveness) to those at highest behavioral risk and by preventing sexual disinhibition. This benefit could be lost, however, by sexual disinhibition and by high PrEP discontinuation, especially with lower PrEP effectiveness (≀:50%). © 2007 Abbas et al

    Application of FTIR spectroscopy for the determination of virgin coconut oil in binary mixtures with olive oil and palm oil.

    Get PDF
    Rapid Fourier transform infrared (FTIR) spectroscopy combined with attenuated total reflectance (ATR) was applied for quantitative analysis of virgin coconut oil (VCO) in binary mixtures with olive oil (OO) and palm oil (PO). The spectral bands correlated with VCO, OO, PO; blends of VCO and OO; VCO and PO were scanned, interpreted, and identified. Two multivariate calibration methods, partial least square (PLS) and principal component regression (PCR), were used to construct the calibration models that correlate between actual and FTIR-predicted values of VCO contents in the mixtures at the FTIR spectral frequencies of 1,120–1,105 and 965–960 cm−1. The calibration models obtained were cross validated using the “leave one out” method. PLS at these frequencies showed the best calibration model, in terms of the highest coefficient of determination (R 2) and the lowest of root mean standard error of calibration (RMSEC) with R 2 = 0.9992 and RMSEC = 0.756, respectively, for VCO in mixture with OO. Meanwhile, the R 2 and RMSEC values obtained for VCO in mixture with PO were 0.9996 and 0.494, respectively. In general, FTIR spectroscopy serves as a suitable technique for determination of VCO in mixture with the other oils

    Yeasts associated with the production of distilled alcoholic beverages

    Get PDF
    Distilled alcoholic beverages are produced firstly by fermenting sugars emanating from cereal starches (in the case of whiskies), sucrose-rich plants (in the case of rums), fructooligosaccharide-rich plants (in the case of tequila) or from fruits (in the case of brandies). Traditionally, such fermentations were conducted in a spontaneous fashion, relying on indigenous microbiota, including wild yeasts. In modern practices, selected strains of Saccharomyces cerevisiae are employed to produce high levels of ethanol together with numerous secondary metabolites (eg. higher alcohols, esters, carbonyls etc.) which greatly influence the final flavour and aroma characteristics of spirits following distillation of the fermented wash. Therefore, distillers, like winemakers, must carefully choose their yeast strain which will be very important in providing the alcohol content and the sensory profiles of spirit beverages. This Chapter discusses yeast and fermentation aspects associated with the production of selected distilled spirits and highlights similarities and differences with the production of wine

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    • 

    corecore