247 research outputs found

    The Mechanisms of Codon Reassignments in Mitochondrial Genetic Codes

    Get PDF
    Many cases of non-standard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The gain represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The loss represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is Codon Disappearance, where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the Unassigned Codon mechanism, the loss occurs first, whereas in the Ambiguous Intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. Codon disappearance is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense to sense reassignments cannot be explained by codon disappearance. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the Unassigned Codon and Ambiguous Intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully.Comment: 53 pages (45 pages, including 4 figures + 8 pages of supplementary information). To appear in J.Mol.Evo

    Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials.

    Get PDF
    BACKGROUND: Treatment efficacy of physical agents in osteoarthritis of the knee (OAK) pain has been largely unknown, and this systematic review was aimed at assessing their short-term efficacies for pain relief. METHODS: Systematic review with meta-analysis of efficacy within 1-4 weeks and at follow up at 1-12 weeks after the end of treatment. RESULTS: 36 randomised placebo-controlled trials (RCTs) were identified with 2434 patients where 1391 patients received active treatment. 33 trials satisfied three or more out of five methodological criteria (Jadad scale). The patient sample had a mean age of 65.1 years and mean baseline pain of 62.9 mm on a 100 mm visual analogue scale (VAS). Within 4 weeks of the commencement of treatment manual acupuncture, static magnets and ultrasound therapies did not offer statistically significant short-term pain relief over placebo. Pulsed electromagnetic fields offered a small reduction in pain of 6.9 mm [95% CI: 2.2 to 11.6] (n = 487). Transcutaneous electrical nerve stimulation (TENS, including interferential currents), electro-acupuncture (EA) and low level laser therapy (LLLT) offered clinically relevant pain relieving effects of 18.8 mm [95% CI: 9.6 to 28.1] (n = 414), 21.9 mm [95% CI: 17.3 to 26.5] (n = 73) and 17.7 mm [95% CI: 8.1 to 27.3] (n = 343) on VAS respectively versus placebo control. In a subgroup analysis of trials with assumed optimal doses, short-term efficacy increased to 22.2 mm [95% CI: 18.1 to 26.3] for TENS, and 24.2 mm [95% CI: 17.3 to 31.3] for LLLT on VAS. Follow-up data up to 12 weeks were sparse, but positive effects seemed to persist for at least 4 weeks after the course of LLLT, EA and TENS treatment was stopped. CONCLUSION: TENS, EA and LLLT administered with optimal doses in an intensive 2-4 week treatment regimen, seem to offer clinically relevant short-term pain relief for OAK

    The Cellular Mechanism for Water Detection in the Mammalian Taste System

    Get PDF
    Initiation of drinking behavior relies on both internal state and peripheral water detection. While central neural circuits regulating thirst have been well studied, it is still unclear how mammals recognize external water. Here we show that acid-sensing taste receptor cells (TRCs) that were previously suggested as the sour taste sensors also mediate taste responses to water. Genetic silencing of these TRCs abolished water-evoked responses in taste nerves. Optogenetic self-stimulation of acid-sensing TRCs in thirsty animals induced robust drinking responses toward light even without water. This behavior was only observed when animals were water-deprived but not under food- or salt-depleted conditions, indicating that the hedonic value of water-evoked responses is highly internal-state dependent. Conversely, thirsty animals lacking functional acid-sensing TRCs showed compromised discrimination between water and nonaqueous fluids. Taken together, this study revealed a function of mammalian acid-sensing TRCs that provide a cue for external water

    Sentinel surveillance for human enterovirus 71 in Sarawak, Malaysia: lessons from the first 7 years

    Get PDF
    BACKGROUND: A major outbreak of human enterovirus 71-associated hand, foot and mouth disease in Sarawak in 1997 marked the beginning of a series of outbreaks in the Asia Pacific region. Some of these outbreaks had unusually high numbers of fatalities and this generated much fear and anxiety in the region. METHODS: We established a sentinel surveillance programme for hand, foot and mouth disease in Sarawak, Malaysia, in March 1998, and the observations of the first 7 years are described here. Virus isolation, serotyping and genotyping were performed on throat, rectal, vesicle and other swabs. RESULTS: During this period Sarawak had two outbreaks of human enterovirus 71, in 2000 and 2003. The predominant strains circulating in the outbreaks of 1997, 2000 and 2003 were all from genogroup B, but the strains isolated during each outbreak were genetically distinct from each other. Human enterovirus 71 outbreaks occurred in a cyclical pattern every three years and Coxsackievirus A16 co-circulated with human enterovirus 71. Although vesicles were most likely to yield an isolate, this sample was not generally available from most cases and obtaining throat swabs was thus found to be the most efficient way to obtain virological information. CONCLUSION: Knowledge of the epidemiology of human enterovirus 71 transmission will allow public health personnel to predict when outbreaks might occur and to plan interventions in an effective manner in order to reduce the burden of disease

    The Rho-Family GTPase Rac1 Regulates Integrin Localization in Drosophila Immunosurveillance Cells

    Get PDF
    BACKGROUND: When the parasitoid wasp Leptopilina boulardi lays an egg in a Drosophila larva, phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. The Drosophila β-integrin Myospheroid (Mys) is necessary for lamellocytes to adhere to the cellular capsule surrounding L. boulardi eggs. Integrins are heterodimeric adhesion receptors consisting of α and β subunits, and similar to other plasma membrane receptors undergo ligand-dependent endocytosis. In mammalian cells it is known that integrin binding to the extracellular matrix induces the activation of Rac GTPases, and we have previously shown that Rac1 and Rac2 are necessary for a proper encapsulation response in Drosophila larvae. We wanted to test the possibility that Myospheroid and Rac GTPases interact during the Drosophila anti-parasitoid immune response. RESULTS: In the current study we demonstrate that Rac1 is required for the proper localization of Myospheroid to the cell periphery of haemocytes after parasitization. Interestingly, the mislocalization of Myospheroid in Rac1 mutants is rescued by hyperthermia, involving the heat shock protein Hsp83. From these results we conclude that Rac1 and Hsp83 are required for the proper localization of Mys after parasitization. SIGNIFICANCE: We show for the first time that the small GTPase Rac1 is required for Mysopheroid localization. Interestingly, the necessity of Rac1 in Mys localization was negated by hyperthermia. This presents a problem, in Drosophila we quite often raise larvae at 29°C when using the GAL4/UAS misexpression system. If hyperthermia rescues receptor endosomal recycling defects, raising larvae in hyperthermic conditions may mask potentially interesting phenotypes

    Baicalin administration attenuates hyperglycemia-induced malformation of cardiovascular system

    Get PDF
    In this study, the effects of Baicalin on the hyperglycemia-induced cardiovascular malformation during embryo development were investigated. Using early chick embryos, an optimal concentration of Baicalin (6 μM), was identified which could prevent hyperglycemia-induced cardiovascular malformation of embryos. Hyperglycemia-enhanced cell apoptosis was reduced in embryos and HUVECs in the presence of Baicalin. Hyperglycemia-induced excessive ROS production was inhibited when Baicalin was administered. Analyses of SOD, GSH-Px, MAQE and GABAA suggested Baicalin plays an antioxidant role in chick embryos possibly through suppression of outwardly rectifying Cl(-) in the high-glucose microenvironment. In addition, hyperglycemia-enhanced autophagy fell in the presence of Baicalin, through affecting the ubiquitin of p62 and accelerating autophagy flux. Both Baicalin and Vitamin C could decrease apoptosis, but CQ did not, suggesting autophagy to be a protective function on the cell survival. In mice, Baicalin reduced the elevated blood glucose level caused by streptozotocin (STZ). Taken together, these data suggest that hyperglycemia-induced embryonic cardiovascular malformation can be attenuated by Baicalin administration through suppressing the excessive production of ROS and autophagy. Baicalin could be a potential candidate drug for women suffering from gestational diabetes mellitus

    Cathepsin L Inhibition Prevents Murine Autoimmune Diabetes via Suppression of CD8+ T Cell Activity

    Get PDF
    Background: Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet b cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice. Methods and Findings: Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8 + T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8 + T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8 + T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice. Conclusions: Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8 + T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strateg

    A Novel DC Therapy with Manipulation of MKK6 Gene on Nickel Allergy in Mice

    Get PDF
    BACKGROUND: Although the activation of dermal dendritic cells (DCs) or Langerhans cells (LCs) via p38 mitogen-activated protein kinase (MAPK) plays a crucial role in the pathogenesis of metal allergy, the in vivo molecular mechanisms have not been identified and a possible therapeutic strategy using the control of dermal DCs or LCs has not been established. In this study, we focused on dermal DCs to define the in vivo mechanisms of metal allergy pathogenesis in a mouse nickel (Ni) allergy model. The effects of DC therapy on Ni allergic responses were also investigated. METHODS AND FINDING: The activation of dermal DCs via p38 MAPK triggered a T cell-mediated allergic immune response in this model. In the MAPK signaling cascade in DCs, Ni potently phosphorylated MAP kinase kinase 6 (MKK6) following increased DC activation. Ni-stimulated DCs could prime T cell activation to induce Ni allergy. Interestingly, when MKK6 gene-transfected DCs were transferred into the model mice, a more pronounced allergic reaction was observed. In addition, injection of short interfering (si) RNA targeting the MKK6 gene protected against a hypersensitivity reaction after Ni immunization. The cooperative action between T cell activation and MKK6-mediated DC activation by Ni played an important role in the development of Ni allergy. CONCLUSIONS: DC activation by Ni played an important role in the development of Ni allergy. Manipulating the MKK6 gene in DCs may be a good therapeutic strategy for dermal Ni allergy
    corecore