17 research outputs found

    Allosteric Regulation of Fibronectin/α5β1 Interaction by Fibronectin-Binding MSCRAMMs

    Get PDF
    Citation: Liang, X. W., Garcia, B. L., Visai, L., Prabhakaran, S., Meenan, N. A. G., Potts, J. R., . . . Hook, M. (2016). Allosteric Regulation of Fibronectin/alpha(5)beta(1) Interaction by Fibronectin-Binding MSCRAMMs. Plos One, 11(7), 17. doi:10.1371/journal.pone.0159118Adherence ofmicrobes to host tissues is a hallmark of infectious disease and is often mediated by a class of adhesins termed MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules). Numerous pathogens express MSCRAMMs that specifically bind the heterodimeric human glycoprotein fibronectin (Fn). In addition to roles in adhesion, Fn-binding MSCRAMMs exploit physiological Fn functions. For example, several pathogens can invade host cells by a mechanism whereby MSCRAMM-bound Fn bridges interaction with alpha(5)beta(1) integrin. Here, we investigate two Fn-binding MSCRAMMs, FnBPA (Staphylococcus aureus) and BBK32 (Borrelia burgdorferi) to probe structure-activity relationships of MSCRAMM-induced Fn/alpha(5)beta(1) integrin activation. Circular dichroism, fluorescence resonance energy transfer, and dynamic light scattering techniques uncover a conformational rearrangement of Fn involving domains distant from the MSCRAMM binding site. Surface plasmon resonance experiments demonstrate a significant enhancement of Fn/alpha(5)beta(1) integrin affinity in the presence of FnBPA or BBK32. Detailed kinetic analysis of these interactions reveal that this change in affinity can be attributed solely to an increase in the initial Fn/alpha(5)beta(1) on-rate and that this rate-enhancement is dependent on high-affinity Fn-binding by MSCRAMMs. These data implicate MSCRAMM-induced perturbation of specific intramolecular contacts within the Fn heterodimer resulting in activation by exposing previously cryptic alpha(5)beta(1) interaction motifs. By correlating structural changes in Fn to a direct measurement of increased Fn/alpha(5)beta(1) affinity, this work significantly advances our understanding of the structural basis for the modulation of integrin function by Fn-binding MSCRAMMs

    Naturally mutations in a Staphylococcus aureus virulence regulator attenuate cytotoxicity but permit bacteremia and abscess formation

    No full text
    Staphylococcus aureusis a major bacterial pathogen, which causes severe blood and tissue infections that frequently emerge by autoinfection with asymptomatically carried nose and skin populations. However, recent studies report that bloodstream isolates differ systematically from those found in the nose and skin, exhibiting reduced toxicity toward leukocytes. In two patients, an attenuated toxicity bloodstream infection evolved from an asymptomatically carried high-toxicity nasal strain by loss-of-function mutations in the gene encoding the transcription factor repressor of surface proteins (rsp). Here, we report that rsp knockout mutants lead to global transcriptional and proteomic reprofiling, and they exhibit the greatest signal in a genome-wide screen for genes influencing S. aureus survival in human cells. This effect is likely to be mediated in part via SSR42, a long-noncoding RNA. We show that rsp controls SSR42 expression, is induced by hydrogen peroxide, and is required for normal cytotoxicity and hemolytic activity. Rsp inactivation in laboratory- and bacteremia derived mutants attenuates toxin production, but up-regulates other immune subversion proteins and reduces lethality during experimental infection. Crucially, inactivation of rsp preserves bacterial dissemination, because it affects neither formation of deep abscesses in mice nor survival in human blood. Thus, we have identified a spontaneously evolving, attenuated-cytotoxicity, non hemolytic S. aureus phenotype, controlled by a pleiotropic transcriptional regulator/noncoding RNA virulence regulatory system, capable of causing S. aureus bloodstream infections. Such a phenotype could promote deep infection with limited early clinical manifestations, raising concerns that bacterial evolution within the human body may contribute to severe infection

    Comparison of the immune response during acute and chronic <i>Staphylococcus aureus</i> infection

    Get PDF
    <div><p><i>Staphylococcus aureus</i> bacteria are able to grow in a planktonic state that is associated with acute infections and in biofilms that are associated with chronic infections. Acute infections, such as skin infections, are often self-limiting. However, chronic infections, such as implant infections, can be difficult to clear and may require surgical intervention. The host immune response may contribute to the different outcomes often associated with these two disease types. We used proteomic arrays and two murine models for an initial, descriptive characterization of the contribution of the host immune response to outcomes of acute versus chronic <i>S</i>. <i>aureus</i> disease. We compared the immune responses between a model of self-limiting skin and soft tissue infection caused by the planktonic form of <i>S</i>. <i>aureus</i> versus a model of surgical mesh implant infection, which we show to be caused by a bacterial biofilm. The significantly altered host cytokines and chemokines were largely different in the two models, with responses diminished by 21 days post-implantation in surgical mesh infection. Because bacterial levels remained constant during the 21 days that the surgical mesh infection was followed, those cytokines that are significantly increased during chronic infection are not likely effective in eradicating biofilm. Comparison of the levels of cytokines and chemokines in acute versus chronic <i>S</i>. <i>aureus</i> infection can provide a starting point for evaluation of the role of specific immune factors that are present in one disease manifestation but not the other.</p></div

    Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes

    Get PDF
    Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection

    Macrophage Bactericidal Activities against <i>Staphylococcus aureus</i> Are Enhanced <i>In Vivo</i> by Selenium Supplementation in a Dose-Dependent Manner

    No full text
    <div><p>Background</p><p>Dietary selenium is of fundamental importance to maintain optimal immune function and enhance immunity during infection. To this end, we examined the effect of selenium on macrophage bactericidal activities against <i>Staphylococcus aureus</i>.</p><p>Methods</p><p>Assays were performed in golden Syrian hamsters and peritoneal macrophages cultured with <i>S</i>. <i>aureus</i> and different concentrations of selenium.</p><p>Results</p><p>Infected and selenium-supplemented animals have significantly decreased levels of serum nitric oxide (NO) production when compared with infected but non-selenium-supplemented animals at day 7 post-infection (<i>p</i> < 0.05). A low dose of 5 ng/mL selenium induced a significant decrease in macrophage NO production, but significant increase in hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) levels (respectively, <i>p</i> = 0.009, <i>p</i> < 0.001). The NO production and H<sub>2</sub>O<sub>2</sub> levels were significantly increased with increasing concentrations of selenium; the optimal macrophage activity levels were reached at 20 ng/mL. The concentration of 5 ng/mL of selenium induced a significant decrease in the bacterial arginase activity but a significant increase in the macrophage arginase activity. The dose of 20 ng/mL selenium induced a significant decrease of bacterial growth (<i>p</i> < 0.0001) and a significant increase in macrophage phagocytic activity, NO production/arginase balance and <i>S</i>. <i>aureus</i> killing (for all comparisons, <i>p</i> < 0.001).</p><p>Conclusions</p><p>Selenium acts in a dose-dependent manner on macrophage activation, phagocytosis and bacterial killing suggesting that inadequate doses may cause a loss of macrophage bactericidal activities and that selenium supplementation could enhance the <i>in vivo</i> control of immune response to <i>S</i>. <i>aureus</i>.</p></div
    corecore