1,055 research outputs found

    Fast physical models for Si LDMOS power transistor characterization

    Get PDF
    A new nonlinear, process-oriented, quasi-two-dimensional (Q2D) model is described for microwave laterally diffused MOS (LDMOS) power transistors. A set of one-dimensional energy transport equations are solved across a two-dimensional cross-section in a “current-driven” form. The model accounts for avalanche breakdown and gate conduction, and accurately predicts DC and microwave characteristics at execution speeds sufficiently fast for circuit simulation applications

    Process-orientated physics-based modeling of microwave power transistors: Small- and large-signal characterization

    Get PDF
    The coupling between charge transport, heat and energy flow required to model high frequency power devices is developed in the context of a computationally efficient physics-based model, which has been successfully applied to microwave laterally diffused MOS transistors. The accurate prediction of small-and large-signal microwave characteristics, and the physical insight gained, can be used in the process-orientated optimization and process sensitivity analysis of LDMOS power FETs. The charge-based model is well-suited to non-linear CAD implementation for applications such as power amplifier design. © 2012 IEEE

    Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model

    Get PDF
    BACKGROUND: Pendred syndrome, a common autosomal-recessive disorder characterized by congenital deafness and goiter, is caused by mutations of SLC26A4, which codes for pendrin. We investigated the relationship between pendrin and deafness using mice that have (Slc26a4(+/+)) or lack a complete Slc26a4 gene (Slc26a4(-/-)). METHODS: Expression of pendrin and other proteins was determined by confocal immunocytochemistry. Expression of mRNA was determined by quantitative RT-PCR. The endocochlear potential and the endolymphatic K(+ )concentration were measured with double-barreled microelectrodes. Currents generated by the stria marginal cells were recorded with a vibrating probe. Tissue masses were evaluated by morphometric distance measurements and pigmentation was quantified by densitometry. RESULTS: Pendrin was found in the cochlea in apical membranes of spiral prominence cells and spindle-shaped cells of stria vascularis, in outer sulcus and root cells. Endolymph volume in Slc26a4(-/- )mice was increased and tissue masses in areas normally occupied by type I and II fibrocytes were reduced. Slc26a4(-/- )mice lacked the endocochlear potential, which is generated across the basal cell barrier by the K(+ )channel KCNJ10 localized in intermediate cells. Stria vascularis was hyperpigmented, suggesting unalleviated free radical damage. The basal cell barrier appeared intact; intermediate cells and KCNJ10 mRNA were present but KCNJ10 protein was absent. Endolymphatic K(+ )concentrations were normal and membrane proteins necessary for K(+ )secretion were present, including the K(+ )channel KCNQ1 and KCNE1, Na(+)/2Cl(-)/K(+ )cotransporter SLC12A2 and the gap junction GJB2. CONCLUSIONS: These observations demonstrate that pendrin dysfunction leads to a loss of KCNJ10 protein expression and a loss of the endocochlear potential, which may be the direct cause of deafness in Pendred syndrome

    Wilson Lines and a Canonical Basis of SU(4) Heterotic Standard Models

    Full text link
    The spontaneous breaking of SU(4) heterotic standard models by Z_3 x Z_3 Wilson lines to the MSSM with three right-handed neutrino supermultiplets and gauge group SU(3)_C x SU(2)_L x U(1) x U(1) is explored. The two-dimensional subspace of the Spin(10) Lie algebra that commutes with su(3)_C + su(2)_L is analyzed. It is shown that there is a unique basis for which the initial soft supersymmetry breaking parameters are uncorrelated and for which the U(1) x U(1) field strengths have no kinetic mixing at any scale. If the Wilson lines "turn on" at different scales, there is an intermediate regime with either a left-right or a Pati-Salam type model. We compute their spectra directly from string theory, and adjust the associated mass parameter so that all gauge parameters exactly unify. A detailed analysis of the running gauge couplings and soft gaugino masses is presented.Comment: 59 pages, 9 figure

    Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents : an in vitro study

    Get PDF
    Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB) to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS) inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state

    Severity Assessment of Lower Respiratory Tract Infection in Malawi: Derivation of a Novel Index (SWAT-Bp) Which Outperforms CRB-65

    Get PDF
    OBJECTIVE: To assess the validity of CRB-65 (Confusion, Respiratory rate >30 breaths/min, BP<90/60 mmHg, age >65 years) as a pneumonia severity index in a Malawian hospital population, and determine whether an alternative score has greater accuracy in this setting. DESIGN: Forty three variables were prospectively recorded during the first 48 hours of admission in all patients admitted to Queen Elizabeth Central Hospital, Malawi, for management of lower respiratory tract infection over a two month period (N = 240). Calculation of sensitivity and specificity for CRB-65 in predicting mortality was followed by multivariate modeling to create a score with superior performance in this population. RESULTS: Median age 37, HIV prevalence 79.9%, overall mortality 18.3%. CRB-65 predicted mortality poorly, indicated by the area under the ROC curve of 0.649. Independent predictors of death were: Male sex, “S” (AOR 2.6); Wasting, “W” (AOR 6.6); non-ambulatory, “A” (AOR 2.5); Temp >38°C or <35°C, “T” (AOR 3.2); BP<100/60, “Bp” (AOR 3.7). Combining these factors to form a severity index (SWAT-Bp) predicted mortality with high sensitivity and specificity (AUC: 0.867). Mortality for scores 0–5 was 0%, 3.3%, 7.4%, 29.2%, 61.5% and 87.5% respectively. A score ≥3 was 84% sensitive and 77% specific for mortality prediction, with a negative predictive value of 95.8%. CONCLUSION: CRB-65 performs poorly in this population. The SWAT-Bp score can accurately stratify patients; ≤2 indicates non-severe infection (mortality 4.4%) and ≥3 severe illness (mortality 45%)

    R-parity Conservation via the Stueckelberg Mechanism: LHC and Dark Matter Signals

    Get PDF
    We investigate the connection between the conservation of R-parity in supersymmetry and the Stueckelberg mechanism for the mass generation of the B-L vector gauge boson. It is shown that with universal boundary conditions for soft terms of sfermions in each family at the high scale and with the Stueckelberg mechanism for generating mass for the B-L gauge boson present in the theory, electric charge conservation guarantees the conservation of R-parity in the minimal B-L extended supersymmetric standard model. We also discuss non-minimal extensions. This includes extensions where the gauge symmetries arise with an additional U(1)_{B-L} x U(1)_X, where U(1)_X is a hidden sector gauge group. In this case the presence of the additional U(1)_X allows for a Z' gauge boson mass with B-L interactions to lie in the sub-TeV region overcoming the multi-TeV LEP constraints. The possible tests of the models at colliders and in dark matter experiments are analyzed including signals of a low mass Z' resonance and the production of spin zero bosons and their decays into two photons. In this model two types of dark matter candidates emerge which are Majorana and Dirac particles. Predictions are made for a possible simultaneous observation of new physics events in dark matter experiments and at the LHC.Comment: 38 pages, 7 fig

    Is spoken language all-or-nothing? Implications for future speech-based human-machine interaction

    Get PDF
    Recent years have seen significant market penetration for voice-based personal assistants such as Apple’s Siri. However, despite this success, user take-up is frustratingly low. This article argues that there is a habitability gap caused by the inevitablemismatch between the capabilities and expectations of human users and the features and benefits provided by contemporary technology. Suggestions aremade as to how such problems might be mitigated, but a more worrisome question emerges: “is spoken language all-or-nothing”? The answer, based on contemporary views on the special nature of (spoken) language, is that there may indeed be a fundamental limit to the interaction that can take place between mismatched interlocutors (such as humans and machines). However, it is concluded that interactions between native and non-native speakers, or between adults and children, or even between humans and dogs, might provide critical inspiration for the design of future speech-based human-machine interaction
    corecore