We investigate the connection between the conservation of R-parity in
supersymmetry and the Stueckelberg mechanism for the mass generation of the B-L
vector gauge boson. It is shown that with universal boundary conditions for
soft terms of sfermions in each family at the high scale and with the
Stueckelberg mechanism for generating mass for the B-L gauge boson present in
the theory, electric charge conservation guarantees the conservation of
R-parity in the minimal B-L extended supersymmetric standard model. We also
discuss non-minimal extensions. This includes extensions where the gauge
symmetries arise with an additional U(1)_{B-L} x U(1)_X, where U(1)_X is a
hidden sector gauge group. In this case the presence of the additional U(1)_X
allows for a Z' gauge boson mass with B-L interactions to lie in the sub-TeV
region overcoming the multi-TeV LEP constraints. The possible tests of the
models at colliders and in dark matter experiments are analyzed including
signals of a low mass Z' resonance and the production of spin zero bosons and
their decays into two photons. In this model two types of dark matter
candidates emerge which are Majorana and Dirac particles. Predictions are made
for a possible simultaneous observation of new physics events in dark matter
experiments and at the LHC.Comment: 38 pages, 7 fig