153 research outputs found

    Regulation of atypical MAP kinases ERK3 and ERK4 by the phosphatase DUSP2

    Get PDF
    The atypical MAP kinases ERK3 and ERK4 are activated by phosphorylation of a serine residue lying within the activation loop signature sequence S-E-G. However, the regulation of ERK3 and ERK4 phosphorylation and activity is poorly understood. Here we report that the inducible nuclear dual-specificity MAP kinase phosphatase (MKP) DUSP2, a known regulator of the ERK and p38 MAPKs, is unique amongst the MKP family in being able to bind to both ERK3 and ERK4. This interaction is mediated by a conserved common docking (CD) domain within the carboxyl-terminal domains of ERK3 and ERK4 and the conserved kinase interaction motif (KIM) located within the non-catalytic amino terminus of DUSP2. This interaction is direct and results in the dephosphorylation of ERK3 and ERK4 and the stabilization of DUSP2. In the case of ERK4 its ability to stabilize DUSP2 requires its kinase activity. Finally, we demonstrate that expression of DUSP2 inhibits ERK3 and ERK4-mediated activation of its downstream substrate MK5. We conclude that the activity of DUSP2 is not restricted to the classical MAPK pathways and that DUSP2 can also regulate the atypical ERK3/4-MK5 signalling pathway in mammalian cells

    Non-Coding Keratin Variants Associate with Liver Fibrosis Progression in Patients with Hemochromatosis

    Get PDF
    Background: Keratins 8 and 18 (K8/K18) are intermediate filament proteins that protect the liver from various forms of injury. Exonic K8/K18 variants associate with adverse outcome in acute liver failure and with liver fibrosis progression in patients with chronic hepatitis C infection or primary biliary cirrhosis. Given the association of K8/K18 variants with endstage liver disease and progression in several chronic liver disorders, we studied the importance of keratin variants in patients with hemochromatosis. Methods: The entire K8/K18 exonic regions were analyzed in 162 hemochromatosis patients carrying homozygous C282Y HFE (hemochromatosis gene) mutations. 234 liver-healthy subjects were used as controls. Exonic regions were PCRamplified and analyzed using denaturing high-performance liquid chromatography and DNA sequencing. Previouslygenerated transgenic mice overexpressing K8 G62C were studied for their susceptibility to iron overload. Susceptibility to iron toxicity of primary hepatocytes that express K8 wild-type and G62C was also assessed. Results: We identified amino-acid-altering keratin heterozygous variants in 10 of 162 hemochromatosis patients (6.2%) and non-coding heterozygous variants in 6 additional patients (3.7%). Two novel K8 variants (Q169E/R275W) were found. K8 R341H was the most common amino-acid altering variant (4 patients), and exclusively associated with an intronic KRT8 IVS7+10delC deletion. Intronic, but not amino-acid-altering variants associated with the development of liver fibrosis. I

    Silencing cytokeratin 18 gene inhibits intracellular replication of Trypanosoma cruzi in HeLa cells but not binding and invasion of trypanosomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As an obligatory intracellular parasite, <it>Trypanosoma cruzi</it>, the etiological agent of Chagas' disease, must invade and multiply within mammalian cells. Cytokeratin 18 (CK18) is among the host molecules that have been suggested as a mediator of important events during <it>T. cruzi</it>-host cell interaction. Based on that possibility, we addressed whether RNA interference (RNAi)-mediated down regulation of the CK18 gene could interfere with the parasite life cycle <it>in vitro</it>. HeLa cells transiently transfected with CK18-RNAi had negligible levels of CK18 transcripts, and significantly reduced levels of CK18 protein expression as determined by immunoblotting or immunofluorescence.</p> <p>Results</p> <p>CK18 negative or positive HeLa cells were invaded equally as well by trypomastigotes of different <it>T. cruzi </it>strains. Also, in CK18 negative or positive cells, parasites recruited host cells lysosomes and escaped from the parasitophorous vacuole equally as well. After that, the growth of amastigotes of the Y or CL-Brener strains, was drastically arrested in CK18 RNAi-treated cells. After 48 hours, the number of amastigotes was several times lower in CK18 RNAi-treated cells when compared to control cells. Simultaneous staining of parasites and CK18 showed that in HeLa cells infected with the Y strain both co-localize. Although the amastigote surface protein-2 contains the domain VTVXNVFLYNR previously described to bind to CK18, in several attempts, we failed to detect binding of a recombinant protein to CK-18.</p> <p>Conclusion</p> <p>The study demonstrates that silencing CK18 by transient RNAi, inhibits intracellular multiplication of the Y and CL strain of <it>T. cruzi </it>in HeLa cells, but not trypanosome binding and invasion.</p

    Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination.

    Get PDF
    Inherited mutations in human PALB2 are associated with a predisposition to breast and pancreatic cancers. PALB2's tumor-suppressing effect is thought to be based on its ability to facilitate BRCA2's function in homologous recombination. However, the biochemical properties of PALB2 are unknown. Here we show that human PALB2 binds DNA, preferentially D-loop structures, and directly interacts with the RAD51 recombinase to stimulate strand invasion, a vital step of homologous recombination. This stimulation occurs through reinforcing biochemical mechanisms, as PALB2 alleviates inhibition by RPA and stabilizes the RAD51 filament. Moreover, PALB2 can function synergistically with a BRCA2 chimera (termed piccolo, or piBRCA2) to further promote strand invasion. Finally, we show that PALB2-deficient cells are sensitive to PARP inhibitors. Our studies provide the first biochemical insights into PALB2's function with piBRCA2 as a mediator of homologous recombination in DNA double-strand break repair

    Keratin 8/18 Regulation of Cell Stiffness-Extracellular Matrix Interplay through Modulation of Rho-Mediated Actin Cytoskeleton Dynamics

    Get PDF
    Cell mechanical activity generated from the interplay between the extracellular matrix (ECM) and the actin cytoskeleton is essential for the regulation of cell adhesion, spreading and migration during normal and cancer development. Keratins are the intermediate filament (IF) proteins of epithelial cells, expressed as pairs in a lineage/differentiation manner. Hepatic epithelial cell IFs are made solely of keratins 8/18 (K8/K18), hallmarks of all simple epithelia. Notably, our recent work on these epithelial cells has revealed a key regulatory function for K8/K18 IFs in adhesion/migration, through modulation of integrin interactions with ECM, actin adaptors and signaling molecules at focal adhesions. Here, using K8-knockdown rat H4 hepatoma cells and their K8/K18-containing counterparts seeded on fibronectin-coated substrata of different rigidities, we show that the K8/K18 IF-lacking cells lose their ability to spread and exhibit an altered actin fiber organization, upon seeding on a low-rigidity substratum. We also demonstrate a concomitant reduction in local cell stiffness at focal adhesions generated by fibronectin-coated microbeads attached to the dorsal cell surface. In addition, we find that this K8/K18 IF modulation of cell stiffness and actin fiber organization occurs through RhoA-ROCK signaling. Together, the results uncover a K8/K18 IF contribution to the cell stiffness-ECM rigidity interplay through a modulation of Rho-dependent actin organization and dynamics in simple epithelial cells

    Evolutionary History of the Vertebrate Mitogen Activated Protein Kinases Family

    Get PDF
    Background: The mitogen activated protein kinases (MAPK) family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear. Methodology/Principal Findings: The MAPK family members were collected from literatures or by searching the genomes of several vertebrates and invertebrates with the known MAPK sequences as queries. We found that vertebrates had significantly more MAPK family members than invertebrates, and the vertebrate MAPK family originated from 3 progenitors, suggesting that a burst of gene duplication events had occurred after the divergence of vertebrates from invertebrates. Conservation of evolutionary synteny was observed in the vertebrate MAPK subfamilies 4, 6, 7, and 11 to 14. Based on synteny and phylogenetic relationships, MAPK12 appeared to have arisen from a tandem duplication of MAPK11 and the MAPK13-MAPK14 gene unit was from a segmental duplication of the MAPK11-MAPK12 gene unit. Adaptive evolution analyses reveal that purifying selection drove the evolution of MAPK family, implying strong functional constraints of MAPK genes. Intriguingly, however, intron losses were specifically observed in the MAPK4 and MAPK7 genes, but not in their flanking genes, during the evolution from teleosts to amphibians and mammals. The specific occurrence of intron losses in the MAPK4 and MAPK7 subfamilies might be associated with adaptive evolution of the vertebrates by enhancing the gen

    Psychometric properties of the Italian versions of the Gambling Urge Scale (GUS) and the Gambling Refusal Self-Efficacy Questionnaire (GRSEQ)

    Get PDF
    Gambling urges and gambling refusal self-efficacy beliefs play a major role in the development and maintenance of problem gambling. This study aimed to translate the Gambling Urge Scale (GUS) and the Gambling Refusal Self-Efficacy Questionnaire (GRSEQ) from English to Italian (GUS-I, GRSEQ-I) and to test their factor structure, internal consistency, construct validity, concurrent validity, and gender differences in 513 individuals from the Italian community. Factor structure and construct validity were tested through Confirmatory Factor Analysis, internal consistency through Cronbach’s alpha, concurrent validity through correlations with gambling-related cognitions (GRCS-I), probable pathological gambling (SOGS-I), and gambling functioning (GFA-R-I). Results confirmed that the 6 items of the GUS-I load highly on one dimension of Gambling Urge, and each of the 26 items of the GRSEQ-I load highly on their relevant sub-dimension, among the following: situations/thoughts, drugs, positive emotions, negative emotions. Both scales are internally consistent and show concurrent validity with gambling-related cognitions, probable pathological gambling, and gambling functioning. Males score higher than females at the GUS-I; females score higher than males at the GRSEQ-I. The findings from the present study suggest that the GUS-I and the GRSEQ-I are internally consistent and valid scales for the assessment of gambling urges and gambling refusal self-efficacy in Italian individuals from the community, with significant repercussions in terms of assessment, prevention, and intervention
    corecore