215 research outputs found

    Stepwise dissection of Plasmodium falciparum merozoite invasion of the human erythrocyte

    Get PDF
    A critical step in establishing malaria parasite infection is the ability of the blood stage merozoite to invade erythrocytes. However, much of our understanding about the cell biology of this process has remained unchanged since seminal work, more than 30 years ago, defined the steps of entry by light and electron microscopy. These studies were, however, only possible using merozoites from simian and avian malaria parasite species, given the poor viability of merozoites from human parasites, specifically Plasmodium falciparum. In contrast, critical invasion proteins have been best described for human or mouse parasite species. Thus our understanding about the molecular and cellular coordination of the entire process of invasion is still largely unknown. Towards addressing this gap, we recently developed a method for harvesting viable P. falciparum merozoites, permitting detailed investigation of the molecular events of merozoite invasio

    Super-Resolution Dissection of Coordinated Events during Malaria Parasite Invasion of the Human Erythrocyte

    Get PDF
    Erythrocyte invasion by the merozoite is an obligatory stage in Plasmodium parasite infection and essential to malaria disease progression. Attempts to study this process have been hindered by the poor invasion synchrony of merozoites from the only in vitro culture-adapted human malaria parasite, Plasmodium falciparum. Using fluorescence, three-dimensional structured illumination, and immunoelectron microscopy of filtered merozoites, we analyze cellular and molecular events underlying each discrete step of invasion. Monitoring the dynamics of these events revealed that commitment to the process is mediated through merozoite attachment to the erythrocyte, triggering all subsequent invasion events, which then proceed without obvious checkpoints. Instead, coordination of the invasion process involves formation of the merozoite-erythrocyte tight junction, which acts as a nexus for rhoptry secretion, surface-protein shedding, and actomyosin motor activation. The ability to break down each molecular step allows us to propose a comprehensive model for the molecular basis of parasite invasion. © 2011 Elsevier Inc

    Psychological determinants of whole-body endurance performance

    Get PDF
    Background: No literature reviews have systematically identified and evaluated research on the psychological determinants of endurance performance, and sport psychology performance-enhancement guidelines for endurance sports are not founded on a systematic appraisal of endurance-specific research. Objective: A systematic literature review was conducted to identify practical psychological interventions that improve endurance performance and to identify additional psychological factors that affect endurance performance. Additional objectives were to evaluate the research practices of included studies, to suggest theoretical and applied implications, and to guide future research. Methods: Electronic databases, forward-citation searches, and manual searches of reference lists were used to locate relevant studies. Peer-reviewed studies were included when they chose an experimental or quasi-experimental research design, a psychological manipulation, endurance performance as the dependent variable, and athletes or physically-active, healthy adults as participants. Results: Consistent support was found for using imagery, self-talk, and goal setting to improve endurance performance, but it is unclear whether learning multiple psychological skills is more beneficial than learning one psychological skill. The results also demonstrated that mental fatigue undermines endurance performance, and verbal encouragement and head-to-head competition can have a beneficial effect. Interventions that influenced perception of effort consistently affected endurance performance. Conclusions: Psychological skills training could benefit an endurance athlete. Researchers are encouraged to compare different practical psychological interventions, to examine the effects of these interventions for athletes in competition, and to include a placebo control condition or an alternative control treatment. Researchers are also encouraged to explore additional psychological factors that could have a negative effect on endurance performance. Future research should include psychological mediating variables and moderating variables. Implications for theoretical explanations of endurance performance and evidence-based practice are described

    Clinical audit of foot problems in patients with rheumatoid arthritis treated at Counties Manukau District Health Board, Auckland, New Zealand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>At diagnosis, 16% of rheumatoid arthritis (RA) patients may have foot joint involvement, increasing to 90% as disease duration increases. This can lead to joint instability, difficulties in walking and limitation in functional ability that restricts activities of daily living. The podiatrist plays an important role in the multidisciplinary team approach to the management of foot problems. The aim of this study was to undertake a clinical audit of foot problems in patients with RA treated at Counties Manukau District Health Board.</p> <p>Methods</p> <p>Patients with RA were identified through rheumatological clinics run within CMDHB. 100 patients were eligible for inclusion. Specific foot outcome tools were used to evaluate pain, disability and function. Observation on foot lesions were noted and previous history of foot assessment, footwear/insoles and foot surgery were evaluated.</p> <p>Results</p> <p>The median age of the cohort was 60 (IQR: 51–64) years old with median disease duration of 15 (IQR: 7.3–25) years. Over 85% presented with foot lesions that included corns and callus over the forefoot region and lesser toe deformities. Moderate to high disability was noted. High levels of forefoot structural damage were observed. 76% had not seen a podiatrist and 77% reported no previous formal foot assessment. 40% had been seen at the orthotic centre for specialised footwear and insoles. 27% of RA patients reported previous foot surgery. A large proportion of patients wore inappropriate footwear.</p> <p>Conclusion</p> <p>This clinical audit suggests that the majority of RA patients suffer from foot problems. Future recommendations include the provision of a podiatrist within the current CMDHB multidisciplinary rheumatology team to ensure better services for RA patients with foot problems.</p

    Juxtamembrane Shedding of Plasmodium falciparum AMA1 Is Sequence Independent and Essential, and Helps Evade Invasion-Inhibitory Antibodies

    Get PDF
    The malarial life cycle involves repeated rounds of intraerythrocytic replication interspersed by host cell rupture which releases merozoites that rapidly invade fresh erythrocytes. Apical membrane antigen-1 (AMA1) is a merozoite protein that plays a critical role in invasion. Antibodies against AMA1 prevent invasion and can protect against malaria in vivo, so AMA1 is of interest as a malaria vaccine candidate. AMA1 is efficiently shed from the invading parasite surface, predominantly through juxtamembrane cleavage by a membrane-bound protease called SUB2, but also by limited intramembrane cleavage. We have investigated the structural requirements for shedding of Plasmodium falciparum AMA1 (PfAMA1), and the consequences of its inhibition. Mutagenesis of the intramembrane cleavage site by targeted homologous recombination abolished intramembrane cleavage with no effect on parasite viability in vitro. Examination of PfSUB2-mediated shedding of episomally-expressed PfAMA1 revealed that the position of cleavage is determined primarily by its distance from the parasite membrane. Certain mutations at the PfSUB2 cleavage site block shedding, and parasites expressing these non-cleavable forms of PfAMA1 on a background of expression of the wild type gene invade and replicate normally in vitro. The non-cleavable PfAMA1 is also functional in invasion. However – in contrast to the intramembrane cleavage site - mutations that block PfSUB2-mediated shedding could not be stably introduced into the genomic pfama1 locus, indicating that some shedding of PfAMA1 by PfSUB2 is essential. Remarkably, parasites expressing shedding-resistant forms of PfAMA1 exhibit enhanced sensitivity to antibody-mediated inhibition of invasion. Drugs that inhibit PfSUB2 activity should block parasite replication and may also enhance the efficacy of vaccines based on AMA1 and other merozoite surface proteins

    An Upstream Open Reading Frame Controls Translation of var2csa, a Gene Implicated in Placental Malaria

    Get PDF
    Malaria, caused by the parasite Plasmodium falciparum, is responsible for substantial morbidity, mortality and economic losses in tropical regions of the world. Pregnant women are exceptionally vulnerable to severe consequences of the infection, due to the specific adhesion of parasite-infected erythrocytes in the placenta. This adhesion is mediated by a unique variant of PfEMP1, a parasite encoded, hyper-variable antigen placed on the surface of infected cells. This variant, called VAR2CSA, binds to chondroitin sulfate A on syncytiotrophoblasts in the intervillous space of placentas. VAR2CSA appears to only be expressed in the presence of a placenta, suggesting that its expression is actively repressed in men, children or non-pregnant women; however, the mechanism of repression is not understood. Using cultured parasite lines and reporter gene constructs, we show that the gene encoding VAR2CSA contains a small upstream open reading frame that acts to repress translation of the resulting mRNA, revealing a novel form of gene regulation in malaria parasites. The mechanism underlying this translational repression is reversible, allowing high levels of protein translation upon selection, thus potentially enabling parasites to upregulate expression of this variant antigen in the presence of the appropriate host tissue

    Allelic Diversity of the Plasmodium falciparum Erythrocyte Membrane Protein 1 Entails Variant-Specific Red Cell Surface Epitopes

    Get PDF
    The clonally variant Plasmodium falciparum PfEMP1 adhesin is a virulence factor and a prime target of humoral immunity. It is encoded by a repertoire of functionally differentiated var genes, which display architectural diversity and allelic polymorphism. Their serological relationship is key to understanding the evolutionary constraints on this gene family and rational vaccine design. Here, we investigated the Palo Alto/VarO and IT4/R29 and 3D7/PF13_003 parasites lines. VarO and R29 form rosettes with uninfected erythrocytes, a phenotype associated with severe malaria. They express an allelic Cys2/group A NTS-DBL1α1 PfEMP1 domain implicated in rosetting, whose 3D7 ortholog is encoded by PF13_0003. Using these three recombinant NTS-DBL1α1 domains, we elicited antibodies in mice that were used to develop monovariant cultures by panning selection. The 3D7/PF13_0003 parasites formed rosettes, revealing a correlation between sequence identity and virulence phenotype. The antibodies cross-reacted with the allelic domains in ELISA but only minimally with the Cys4/group B/C PFL1955w NTS-DBL1α. By contrast, they were variant-specific in surface seroreactivity of the monovariant-infected red cells by FACS analysis and in rosette-disruption assays. Thus, while ELISA can differentiate serogroups, surface reactivity assays define the more restrictive serotypes. Irrespective of cumulated exposure to infection, antibodies acquired by humans living in a malaria-endemic area also displayed a variant-specific surface reactivity. Although seroprevalence exceeded 90% for each rosetting line, the kinetics of acquistion of surface-reactive antibodies differed in the younger age groups. These data indicate that humans acquire an antibody repertoire to non-overlapping serotypes within a serogroup, consistent with an antibody-driven diversification pressure at the population level. In addition, the data provide important information for vaccine design, as production of a vaccine targeting rosetting PfEMP1 adhesins will require engineering to induce variant-transcending responses or combining multiple serotypes to elicit a broad spectrum of immunity

    Blood Stage Malaria Vaccine Eliciting High Antigen-Specific Antibody Concentrations Confers No Protection to Young Children in Western Kenya

    Get PDF
    The antigen, falciparum malaria protein 1 (FMP1), represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1) of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System), it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccine's safety, immunogenicity, and efficacy in African children.A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12-47 months in general good health.Children were randomised in a 1ratio1 fashion to receive either FMP1/AS02 (50 microg) or Rabipur(R) rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature >/=37.5 degrees C with asexual parasitaemia of >/=50,000 parasites/microL of blood) occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE) was measured over a six-month period following third vaccinations.374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-1(42) antibody concentrations increased from1.3 microg/mL to 27.3 microg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: -26% to +28%; p-value = 0.7).FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-1(42) vaccine development should focus on other formulations and antigen constructs.Clinicaltrials.gov NCT00223990

    A Plasma Survey Using 38 PfEMP1 Domains Reveals Frequent Recognition of the Plasmodium falciparum Antigen VAR2CSA among Young Tanzanian Children

    Get PDF
    PfEMP1 proteins comprise a family of variant antigens that appear on the surface of P. falciparum-infected erythrocytes and bind to multiple host receptors. Using a mammalian expression system and BioPlex technology, we developed an array of 24 protein constructs representing 38 PfEMP1 domains for high throughput analyses of receptor binding as well as total and functional antibody responses. We analyzed the reactivity of 561 plasma samples from 378 young Tanzanian children followed up to maximum 192 weeks of life in a longitudinal birth cohort. Surprisingly, reactivity to the DBL5 domain of VAR2CSA, a pregnancy malaria vaccine candidate, was most common, and the prevalence of reactivity was stable throughout early childhood. Reactivity to all other PfEMP1 constructs increased with age. Antibodies to the DBL2βC2PF11_0521 domain, measured as plasma reactivity or plasma inhibition of ICAM1 binding, predicted reduced risk of hospitalization for severe or moderately severe malaria. These data suggest a role for VAR2CSA in childhood malaria and implicate DBL2βC2PF11_0521 in protective immunity

    Duffy Negative Antigen Is No Longer a Barrier to Plasmodium vivax – Molecular Evidences from the African West Coast (Angola and Equatorial Guinea)

    Get PDF
    Recent reports of Plasmodium vivax infections, the most widely distributed species of human malaria, show that this parasite is evolving and adapting, becoming not only more aggressive but also more frequent in countries where it was not present in the past, becoming, therefore, a major source of concern. Thus, it is extremely important to perform new studies of its distribution in West and Central Africa, where there are few reports of its presence, due to the high prevalence of Duffy-negative individuals. The aim of this study was to investigate the presence of P. vivax in Angola and in Equatorial Guinea, using blood samples and mosquitoes. The results showed that P. vivax seems to be able to invade erythrocytes using receptors other than Duffy, and this new capacity is not exclusive to one strain of P. vivax, since we have found samples infected with two different strains: VK247 and classic. Additionally we demonstrated that the parasite has a greater distribution than previously thought, calling for a reevaluation of its worldwide distribution
    • …
    corecore