219 research outputs found
A Coulomb gas approach to the anisotropic one-dimensional Kondo lattice model at arbitrary filling
We establish a mapping of a general spin-fermion system in one dimension into
a classical generalized Coulomb gas. This mapping allows a renormalization
group treatment of the anisotropic Kondo chain both at and away from
half-filling. We find that the phase diagram contains regions of paramagnetism,
partial and full ferromagnetic order. We also use the method to analyze the
phases of the Ising-Kondo chain.Comment: 19 pages, 9 figure
Branching Fractions for D0 -> K+K- and D0 -> pi+pi-, and a Search for CP Violation in D0 Decays
Using the large hadroproduced charm sample collected in experiment E791 at
Fermilab, we have measured ratios of branching fractions for the two-body
singly-Cabibbo-suppressed charged decays of the D0:
(D0 -> KK)/(D0 -> Kpi) = 0.109 +- 0.003 +- 0.003,
(D0 -> pipi)/(D0 -> Kpi) = 0.040 +- 0.002 +- 0.003, and
(D0 -> KK)/(D0 -> pipi) = 2.75 +- 0.15 +- 0.16. We have looked for
differences in the decay rates of D0 and D0bar to the CP eigenstates K+K- and
pi+pi-, and have measured the CP asymmetry parameters
A_CP(K+K-) = -0.010 +- 0.049 +- 0.012 and
A_CP(pi+pi-) = -0.049 +- 0.078 +- 0.030, both consistent with zero.Comment: 10 Postscript pages, including 2 figures. Submitted to Phys. Lett.
Asymmetries between the production of D+ and D- mesons from 500 GeV/c pi- nucleon interactions as a function of xF and pt**2
We present asymmetries between the production of D+ and D- mesons in Fermilab
experiment E791 as a function of xF and pt**2. The data used here consist of
74,000 fully-reconstructed charmed mesons produced by a 500 GeV/c pi- beam on C
and Pt foils. The measurements are compared to results of models which predict
differences between the production of heavy-quark mesons that have a light
quark in common with the beam (leading particles) and those that do not
(non-leading particles). While the default models do not agree with our data,
we can reach agreement with one of them, PYTHIA, by making a limited number of
changes to parameters used
Local fluctuations in quantum critical metals
We show that spatially local, yet low-energy, fluctuations can play an
essential role in the physics of strongly correlated electron systems tuned to
a quantum critical point. A detailed microscopic analysis of the Kondo lattice
model is carried out within an extended dynamical mean-field approach. The
correlation functions for the lattice model are calculated through a
self-consistent Bose-Fermi Kondo problem, in which a local moment is coupled
both to a fermionic bath and to a bosonic bath (a fluctuating magnetic field).
A renormalization-group treatment of this impurity problem--perturbative in
, where is an exponent characterizing the spectrum
of the bosonic bath--shows that competition between the two couplings can drive
the local-moment fluctuations critical. As a result, two distinct types of
quantum critical point emerge in the Kondo lattice, one being of the usual
spin-density-wave type, the other ``locally critical.'' Near the locally
critical point, the dynamical spin susceptibility exhibits scaling
with a fractional exponent. While the spin-density-wave critical point is
Gaussian, the locally critical point is an interacting fixed point at which
long-wavelength and spatially local critical modes coexist. A Ginzburg-Landau
description for the locally critical point is discussed. It is argued that
these results are robust, that local criticality provides a natural description
of the quantum critical behavior seen in a number of heavy-fermion metals, and
that this picture may also be relevant to other strongly correlated metals.Comment: 20 pages, 12 figures; typos in figure 3 and in the main text
corrected, version as publishe
Measurement of the form-factor ratios for D+ --> K* l nu
The form factor ratios rv=V(0)/A1(0), r2=A2(0)/A1(0) and r3=A3(0)/A1(0) in
the decay D+ --> K* l nu, K* -->K-pi+ have been measured using data from charm
hadroproduction experiment E791 at Fermilab. From 3034 (595) signal
(background) events in the muon channel, we obtain rv=1.84+-0.11+-0.09,
r2=0.75+-0.08+-0.09 and, as a first measurement of r3, we find 0.04+-0.33
+-0.29. The values of the form factor ratios rv and r2 measured for the muon
channel are combined with the values of rv and r2 that we have measured in the
electron channel. The combined E791 results for the muon and electron channels
are rv=1.87+-0.08+-0.07 and r2=0.73+-0.06+-0.08.Comment: 9 pages + 3 figures ; submitted to PL
Search for Rare and Forbidden Dilepton Decays of the D+, Ds, and D0 Charmed Mesons
We report the results of a search for flavor-changing neutral current,
lepton-flavor violating, and lepton-number violating decays of D+, Ds, and D0
mesons (and their antiparticles) into modes containing muons and electrons.
Using data from Fermilab charm hadroproduction experiment E791, we examine the
pi,l,l and K,l,l decay modes of D+ and Ds and the l+l- decay modes of D0. No
evidence for any of these decays is found. Therefore, we present
branching-fraction upper limits at 90% confidence level for the 24 decay modes
examined. Eight of these modes have no previously reported limits, and fourteen
are reported with significant improvements over previously published results.Comment: 12 pages, 3 figures, LaTeX, elsart.cls, epsf.sty, amsmath.sty
Submitted to Physics Letters
Mass Splitting and Production of and Measured in N Interactions
From a sample of decaying to the
final state, we have observed, in the hadroproduction experiment E791 at
Fermilab, and through
their decays to . The mass difference ) is measured to be ; for
, we find .
The rate of production from decays of the triplet is
(22\pm 2\pm 3) {%} of the total production assuming equal rate
of production from all three, as measured for and .
We do not observe a statistically significant baryon-antibaryon
production asymmetry. The and spectra of from
decays are observed to be similar to those for all 's
produced.Comment: 15 pages, uuencoded postscript 3 figures uuencoded, tar-compressed
fil
Search for CP Violation in Charged D Meson Decays
We report results of a search for CP violation in the singly
Cabibbo-suppressed decays D+ -> K- K+ pi+, phi pi+, K*(892)0 K+, and pi- pi+
pi+ based on data from the charm hadroproduction experiment E791 at Fermilab.
We search for a difference in the D+ and D- decay rates for each of the final
states. No evidence for a difference is seen. The decay rate asymmetry
parameters A(CP), defined as the difference in the D+ and D- decay rates
divided by the sum of the decay rates, are measured to be: A(CP)(K K pi) =
-0.014 +/- 0.029, A(CP)(phi pi) = -0.028 +/- 0.036, A(CP)(K*(892) K) = -0.010
+/- 0.050, and A(CP)(pi pi pi) = -0.017 +/- 0.042.Comment: 13 pages, 5 figures, 1 table; Elsevier LaTe
Differential cross sections, charge production asymmetry, and spin-density matrix elements for D*(2010) produced in 500 GeV/c pi^- nucleon interactions
We report differential cross sections for the production of D*(2010) produced
in 500 GeV/c pi^- nucleon interactions from experiment E791 at Fermilab, as
functions of Feynman-x (x_F) and transverse momentum squared (p_T^2). We also
report the D* +/- charge asymmetry and spin-density matrix elements as
functions of these variables. Investigation of the spin-density matrix elements
shows no evidence of polarization. The average values of the spin alignment are
\eta= 0.01 +- 0.02 and -0.01 +- 0.02 for leading and non-leading particles,
respectively.Comment: LaTeX2e (elsart.cls). 13 pages, 6 figures (eps files). Submitted to
Physics Letters
- …
