122 research outputs found
Sub-femtosecond stark control of molecular photoexcitation with near single-cycle pulses.
Electric fields can tailor molecular potential energy surfaces by interaction with the electronic state-dependent molecular dipole moment. Recent developments in optics have enabled the creation of ultra-short few-cycle optical pulses with precise control of the carrier envelope phase (CEP) that determines the offset of the maxima in the field and the pulse envelope. This opens news ways of controlling ultrafast molecular dynamics by exploiting the CEP. In this work, we show that the photoabsorption efficiency of oriented H2CSO (sulfine) can be controlled by tuning the CEP. We further show that this control emanates from a resonance condition related to Stark shifting of the electronic energy levels
Le malaise économique wallon
Ce numéro de Regards économiques se penche sur la situation économique et sociale en Wallonie. Il en dresse un large portrait, en souligne les points positifs et négatifs, et ébauche quelques pistes de réflexion sur les mesures propices à donner à l’économie wallonne un nouvel élan.
Low-lying, Rydberg states of polycyclic aromatic hydrocarbons (PAHs) and cyclic alkanes
TD-DFT calculations of low-lying, Rydberg states of a series of polycyclic hydrocarbons and cyclic alkanes are presented. Systematic variations in binding energies and photoelectron angular distributions for the first members of the s, p and d Rydberg series are predicted for increasing molecular complexity. Calculated binding energies are found to be in very good agreement with literature values where they exist for comparison. Experimental angle-resolved photoelectron spectroscopy results are presented for coronene, again showing very good agreement with theoretical predictions of binding energies and also for photoelectron angular distributions. The Dyson orbitals for the small "hollow" carbon structures, cubane, adamantane and dodecahedrane, are shown to have close similarities to atomic s, p and d orbitals, similar to the superatom molecular orbitals (SAMOs) reported for fullerenes, indicating that these low-lying, diffuse states are not restricted to π-conjugated molecules. © 2017 the Owner Societies
Coherent Electronic Wave Packet Motion in C-60 Controlled by the Waveform and Polarization of Few-Cycle Laser Fields
Citation: Li, H., Mignolet, B., Wachter, G., Skruszewicz, S., Zherebtsov, S., Sussmann, F., . . . Kling, M. F. (2015). Coherent Electronic Wave Packet Motion in C-60 Controlled by the Waveform and Polarization of Few-Cycle Laser Fields. Physical Review Letters, 114(12), 6. doi:10.1103/PhysRevLett.114.123004Strong laser fields can be used to trigger an ultrafast molecular response that involves electronic excitation and ionization dynamics. Here, we report on the experimental control of the spatial localization of the electronic excitation in the C-60 fullerene exerted by an intense few-cycle (4 fs) pulse at 720 nm. The control is achieved by tailoring the carrier-envelope phase and the polarization of the laser pulse. We find that the maxima and minima of the photoemission-asymmetry parameter along the laser-polarization axis are synchronized with the localization of the coherent electronic wave packet at around the time of ionization.Additional Authors: Tiggesbaumker, J.;Meiwes-Broer, K. H.;Lemell, C.;Burgdorfer, J.;Levine, R. D.;Remacle, F.;Kling, M. F
Taking the steps toward sustainable livestock: our multidisciplinary global farm platform journey
Implications
• The Global Farm Platform was conceived and established to explore multidisciplinary strategies for
optimising the sustainability of ruminant livestock systems around the world.
• International sustainability issues are common, but
the solutions are often region-specific; therefore, our
farms, situated across all major agroclimatic zones, are
a unique resource worldwide.
• Each farm is following "steps to sustainable livestock" to improve their production system(s), thereby
developing robust metrics to progress economic, environmental and social viability.
• The consortium works collaboratively to improve the
sustainability of ruminants, which we argue are a vital
component of global food systems, delivering both
human and planetary health
Relative asymptotics for orthogonal matrix polynomials with respect to a perturbed matrix measure on the unit circle
19 pages, no figures.-- MSC2000 codes: 42C05, 47A56.MR#: MR1970413 (2004b:42058)Zbl#: Zbl 1047.42021Given a positive definite matrix measure Ω supported on the unit circle T, then main purpose of this paper is to study the asymptotic behavior of L_n(\tilde{\Omega}) L_n(\Omega) -1} and \Phi_n(z, \tilde{\Omega}) \Phi_n(z, \tilde{\Omega}) -1} where , , M is a positive definite matrix and δ is the Dirac matrix measure. Here, Ln(·) means the leading coefficient of the orthonormal matrix polynomials Φn(z; •).Finally, we deduce the asymptotic behavior of in the case when M=I.The work of the second author was supported by Dirección General de Enseñanza Superior (DGES) of Spain under grant PB96-0120-C03-01 and INTAS
Project INTAS93-0219 Ext.Publicad
Coherent Electronic Wave Packet Motion in C-60 Controlled by the Waveform and Polarization of Few-Cycle Laser Fields
Strong laser fields can be used to trigger an ultrafast molecular response that involves electronic excitation and ionization dynamics. Here, we report on the experimental control of the spatial localization of the electronic excitation in the C-60 fullerene exerted by an intense few-cycle (4 fs) pulse at 720 nm. The control is achieved by tailoring the carrier-envelope phase and the polarization of the laser pulse. We find that the maxima and minima of the photoemission-asymmetry parameter along the laser-polarization axis are synchronized with the localization of the coherent electronic wave packet at around the time of ionization.open113033sciescopu
- …