173 research outputs found

    Solid-phase synthesis of peptides containing reverse-turn mimetic bicyclic lactams

    Get PDF
    The solid-phase synthesis and characterization of a series of peptides (4-15) containing reverse-turn mimetic bicyclic lactams is reported. The bicyclic lactams (1a, 1b) possess high structural similarity to the two central residues of a Pturn. Amino acid conjugates of these bicyclic lactams were synthesized on solid supports following a g-fluorenylmethoxycarbonyl (FMOC) protection strategy on WangMerrifield resin. Coupling between amino acids was accomplished by means of diisopropylcarbodiimide (DIC)/ hydroxyazabenzotriazole (HOAt). Coupling between amino acids and the mimics was performed with the potent Carpino's reagent O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramelhyluronium hexafluorophosphate (HATU). The final compounds were cleaved from the resin and obtained as N-acetylated methyl esters or benzyl amides

    Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer

    Get PDF
    Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation

    Effect of Iron Supplementation on the Modulation of Iron Metabolism, Muscle Damage Biomarkers and Cortisol in Professional Cyclists

    Get PDF
    Background: The intense efforts made during 3-week stage races may reduce iron metabolism and hematological parameters. These efforts may increase the levels of circulating muscle damage markers and some hormones. All of these physiological changes may have negative consequences not only for the performance of athletes but also for their health. The main aim of this study was to evaluate the effects of supplementation with 80 mg/day of iron on haematological parameters, serum cortisol and biochemical muscle indicators on elite male cyclists during the 3-week stage race the Vuelta a España. Our secondary aim was to examine whether the hematological profile is associated with muscular damage parameters and cortisol. Methods: Eighteen elite male cyclists from two teams were randomly assigned to one of two groups: (1) control group (CG, n = 9; age: 26.1 ± 4.6 years; maximum oxygen uptake per kg: 78.0 ± 5.4 mL/kg/min) or (2) group treated with 80 mg/day iron (800 mg of iron protein succinylate, ITG, n = 9; age: 25.7 ± 6.4 years; maximum oxygen uptake per kg: 77.6 ± 6.5 mL/kg/min). The cyclists were subjected to blood tests one week before the start of the race (T1) and after 4 weeks of treatment, coinciding with the end of the competition (T2). Iron metabolism parameters, muscle damage indicators and serum cortisol were assessed. Repeated-measures ANOVA with group as a factor (GC and ITG) were used to examine the differences between groups throughout the study (time × group) after iron supplementation treatment. Results: Significant differences were observed between groups throughout the study in the group-by-time interaction and changes in serum iron (GC: -8.93 ± 10.35% vs. ITG: 0.60 ± 8.64%; p = 0.018), ferritin (GC: -13.88 ± 23.53% vs. ITG: 91.08 ± 118.30%; p = 0.004), haemoglobin (GC: 10.00 ± 3.32% vs. ITG: 13.04 ± 5.64%; p < 0.001), haematocrit (GC: -1.17 ± 3.78% vs. ITG: 7.32 ± 3.92%; p < 0.001) and cortisol (GC: 24.74 ± 25.84% vs. ITG: ⁻13.54 ± 13.61%; p = 0.005). However, no significant group-by-time interaction was observed for the circulating muscle biomarkers. Additionally, significant negative correlations of serum iron, haemoglobin and haematocrit with muscle circulating biomarkers and cortisol (p < 0.05) were observed. Conclusions: Oral iron supplementation with 80 mg/day iron (800 mg of iron protein succinylate) effectively prevented a decline in haematological parameters (serum iron, ferritin, haemoglobin and haematocrit) and maintained optimal levels of recovery in elite cyclists during the Vuelta a España. Moreover, the hematological values were shown to have relationship with muscular recovery parameters

    Caspase-8 association with the focal adhesion complex promotes tumor cell migration and metastasis

    Get PDF
    Caspase-8 is a proapoptotic protease that suppresses neuroblastoma metastasis by inducing programmed cell death. Paradoxically, caspase-8 can also promote cell migration among nonapoptotic cells; here, we show that caspase-8 can promote metastasis when apoptosis is compromised. Migration is enhanced by caspase-8 recruitment to the cellular migration machinery following integrin ligation. Caspase-8 catalytic activity is not required for caspase-8-enhanced cell migration; rather, caspase-8 interacts with a multiprotein complex that can include focal adhesion kinase and calpain 2 (CPN2), enhancing cleavage of focal adhesion substrates and cell migration. Caspase-8 association with CPN2/calpastatin disrupts calpastatin-mediated inhibition of CPN2. In vivo, knockdown of either caspase-8 or CPN2 disrupts metastasis among apoptosis-resistant tumors. This unexpected molecular collaboration provides an explanation for the continued or elevated expression of caspase-8 observed in many tumors

    Blockade of MIF-CD74 Signalling on Macrophages and Dendritic Cells Restores the Antitumour Immune Response Against Metastatic Melanoma

    Get PDF
    Mounting an effective immune response against cancer requires the activation of innate and adaptive immune cells. Metastatic melanoma is the most aggressive form of skin cancer. While immunotherapies have shown a remarkable success in melanoma treatment, patients develop resistance by mechanisms that include the establishment of an immune suppressive tumor microenvironment. Thus, understanding how metastatic melanoma cells suppress the immune system is vital to develop effective immunotherapies against this disease. In this study, we find that macrophages (MOs) and dendritic cells (DCs) are suppressed in metastatic melanoma and that the Ig-CDR-based peptide C36L1 is able to restore MOs and DCs' antitumorigenic and immunogenic functions and to inhibit metastatic growth in lungs. Specifically, C36L1 treatment is able to repolarize M2-like immunosuppressive MOs into M1-like antitumorigenic MOs, and increase the number of immunogenic DCs, and activated cytotoxic T cells, while reducing the number of regulatory T cells and monocytic myeloid-derived suppressor cells in metastatic lungs. Mechanistically, we find that C36L1 directly binds to the MIF receptor CD74 which is expressed on MOs and DCs, disturbing CD74 structural dynamics and inhibiting MIF signaling on these cells. Interfering with MIF-CD74 signaling on MOs and DCs leads to a decrease in the expression of immunosuppressive factors from MOs and an increase in the capacity of DCs to activate cytotoxic T cells. Our findings suggest that interfering with MIF-CD74 immunosuppressive signaling in MOs and DCs, using peptide-based immunotherapy can restore the antitumor immune response in metastatic melanoma. Our study provides the rationale for further development of peptide-based therapies to restore the antitumor immune response in metastatic melanoma

    Kinase-independent role for CRAF-driving tumour radioresistance via CHK2

    Get PDF
    Although oncology therapy regimens commonly include radiation and genotoxic drugs, tumour cells typically develop resistance to these interventions. Here we report that treatment of tumours with ionizing radiation or genotoxic drugs drives p21-activated kinase 1 (PAK1)-mediated phosphorylation of CRAF on Serine 338 (pS338) triggering a kinase-independent mechanism of DNA repair and therapeutic resistance. CRAF pS338 recruits CHK2, a cell cycle checkpoint kinase involved in DNA repair, and promotes CHK2 phosphorylation/activation to enhance the tumour cell DNA damage response. Accordingly, a phospho-mimetic mutant of CRAF (S338D) is sufficient to induce the CRAF/CHK2 association enhancing tumour radioresistance, while an allosteric CRAF inhibitor sensitizes tumour cells to ionizing radiation or genotoxic drugs. Our findings establish a role for CRAF in the DNA damage response that is independent from its canonical function as a kinase

    The role of selenium mineral trace element in exercise: antioxidant defense system, muscle performance, hormone response, and athletic performance. A systematic review

    Get PDF
    Exercise overproduces oxygen reactive species (ROS) and eventually exceeds the body’s antioxidant capacity to neutralize them. The ROS produce damaging effects on the cell membrane and contribute to skeletal muscle damage. Selenium (Se), a natural mineral trace element, is an essential component of selenoproteins that plays an important role in antioxidant defense. The activity of the enzyme glutathione peroxidase (GPx), a highly-efficient antioxidant enzyme, is closely dependent on the presence of Se. These properties of Se may be potentially applicable to improve athletic performance and training recovery. We systematically searched for published studies to evaluate the effectiveness of Se supplementation on antioxidant defense system, muscle performance, hormone response, and athletic performance among physically active individuals. We used the Preferred Reporting Elements for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and searched in SCOPUS, Web of Science (WOS), and PubMed databases to identify published studies until March 2020. The systematic review incorporated original studies with randomized controlled crossover or parallel design in which intake of Se administered once a day was compared with the same placebo conditions. No exclusions were applied for the type of physical exercise performed, the sex, nor the age of the participants. Among 150 articles identified in the search, 6 met the criteria and were included in the systematic review. The methodological quality of the studies was evaluated using the McMaster Critical Review Form. Oral Se supplementation with 180 µg/day or 240 µg/day (selenomethionine) and 200 µg/day (Sodium Selenite), significantly decreased lipid hydroperoxide levels and increased GPx in plasma, erythrocyte, and muscle. No significant effects were observed on athletic performance, testosterone hormone levels, creatine kinase activity, and exercise training-induced adaptations on oxidative enzyme activities or on muscle fiber type myosin heavy chain expression. In addition, Se supplementation showed to have a dampening effect on the mitochondria changes in chronic and acute exercise. In summary, the use of Se supplementation has no benefits on aerobic or anaerobic athletic performance but it may prevent Se deficiencies among athletes with high-intensity and high-volume training. Optimal Se plasma levels may be important to minimize chronic exercise-induced oxidative effects and modulate the exercise effect on mitochondrial changes

    Electromyography: a simple and accessible tool to assess physical performance and health during hypoxia training. A systematic review

    Get PDF
    Hypoxia causes reduced partial pressure of oxygen in arterial blood and induces adaptations in skeletal muscle that may affect individuals’ physical performance and muscular health. These muscular changes are detectable and quantifiable by electromyography (EMG), an instrument that assesses electrical activity during active contraction at rest. EMG is a relatively simple and accessible technique for all patients, one that can show the degree of the sensory and motor functions because it provides information about the status of the peripheral nerves and muscles. The main goal of this review is to evaluate the scientific evidence of EMG as an instrument for monitoring different responses of skeletal muscles subjected to external stimuli such as hypoxia and physical activity. A structured search was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines in Medline/PubMed, Scielo, Google Scholar, Web of Science, and Cochrane Library Plus. The search included articles published in the last 25 years until May 2020 and was restricted to English- and Spanish-language publications. As such, investigators identified nine articles that met the search criteria. The results determined that EMG was able to detect muscle fatigue from changes in the frequency spectrum. When a muscle was fatigued, high frequency components decreased and low frequency components increased. In other studies, EMG determined muscle activation increased during exercise by recruiting motor units and by increasing the intensity of muscle contractions. Finally, it was also possible to calculate the mean quadriceps quadratic activity used to obtain an image of muscle activation. In conclusion, EMG offers a suitable tool for monitoring the different skeletal muscle responses and has sufficient sensitivity to detect hypoxia-induced muscle changes produced by hypoxic stimuli. Moreover, EMG enhances an extension of physical examination and tests motor-system integrity

    Effect of α-tocopherol megadoses on hematologic parameters and antioxidant capacity of rats in an ultraendurance probe

    Get PDF
    This study was aimed to analyze the effect of two different megadoses of α-tocopherol (vit E) in the antioxidant activity and red and white blood series of Wistar rats after a 180-min ultraendurance probe. Three groups of 10 rats were analyzed; VEAG: acute administration of a megadoses of 5,000 IU/kg of vit E the day before the probe; VECG: chronic administration of 1,000 IU/kg/day of vit E for 6 days before the probe; CG: placebo administration. VEAG presented white cells, red blood cells, hematocrit, hemoglobin values significantly higher than CG and VECG (p < 0.05). The mean corpuscular hemoglobin and lymphocytes concentrations were significantly higher in the VECG than in the other two groups (p < 0.05). Similarly, VEAG presented a significantly higher vit E blood concentration than VECG and CG (p < 0.05), and VECG than CG (p < 0.05). Finally, we found a significantly positive correlation between trolox equivalent antioxidant capacity (TEAC) and red blood cells concentration (r = 0.374) and a significantly inverse correlation between TEAC and blood lactate concentration (r = −0.365). Our findings suggest that acute vit E megadoses could protect against transitory sport anemia symptoms and increase the white blood cell count in comparison with the chronic dose and control groups after an ultraendurance probe
    corecore