3,792 research outputs found

    Bioethanol from Germinated Grains.

    Get PDF
    The most well-known way to produce bioethanol is by the enzymatic hydrolysis and fermentation of starch. In a new project “BioConcens” (2007) sponsored by DARCOF (DAnish Research Center for Organic Food and farming) one aim is to develop a combined ethanol and biogas production for use in organic farming using starch containing biomass. Natural enzymes from cereals will be used for hydrolysis of starch to glucose in accordance with technology in brewing technology. Commercial enzymes are often produced from gene-modified organisms and will therefore not be used in the suggested organic context or process. A preliminary study was performed in which grains of wheat, rye, and barley were germinated using traditional methods applied in malting for beer production. During malting the amylase enzymes present in the grain are activated (autoamylolytic effect). Three steps were applied in the malting process; steeping, germination, and drying of the grains. After malting the grains were milled and mixed with water to 13% DM, cooked at 57.5C for 2 hours (to activate the enzymes), and cooled to 30C before adding Bakers Yeast. The results of this study indicate that efficient hydrolysis of starch can be achieved by activation of autoamylolytic enzymes in cereal grains after a malting process. The ethanol yields obtained in the autoamylolytic hydrolysis was comparable (or slightly higher) to that of reference experiments using commercial enzymes (amylases). The highest ethanol yield was obtained with wheat (0.34 g/g DM grain), followed by barley (0.31 g/g DM grain), and rye (0.29 g/g DM grain)

    Sustainable bioethanol production combining biorefinery principles using combined raw materials from wheat undersown with clover-grass

    Get PDF
    To obtain the best possible net energy balance of the bioethanol production the biomass raw materials used need to be produced with limited use of non-renewable fossil fuels. Intercropping strategies are known to maximize growth and productivity by including more than one species in the crop stand, very often with legumes as one of the components. In the present study clover-grass is undersown in a traditional wheat crop. Thereby, it is possible to increase input of symbiotic fixation of atmospheric nitrogen into the cropping systems and reduce the need for fertilizer applications. Furthermore, when using such wheat and clover-grass mixtures as raw material, addition of urea and other fermentation nutrients produced from fossil fuels can be reduced in the whole ethanol manufacturing chain. Using second generation ethanol technology mixtures of relative proportions of wheat straw and clover-grass (15:85, 50:50, and 85:15) were pretreated by wet oxidation. The results showed that supplementing wheat straw with clover-grass had a positive effect on the ethanol yield in simultaneous saccharification and fermentation experiments, and the effect was more pronounced in inhibitory substrates. The highest ethanol yield (80% of theoretical) was obtained in the experiment with high fraction (85%) of clover-grass. In order to improve the sugar recovery of clover-grass, it should be separated into a green juice (containing free sugars, fructan, amino acids, vitamins and soluble minerals) for direct fermentation and a fibre pulp for pretreatment together with wheat straw. Based on the obtained results a decentralized biorefinery concept for production of biofuel is suggested emphasizing sustainability, localness, and recycling principle

    Fission yeast 26S proteasome mutants are multi-drug resistant due to stabilization of the pap1 transcription factor

    Get PDF
    Here we report the result of a genetic screen for mutants resistant to the microtubule poison methyl benzimidazol-2-yl carbamate (MBC) that were also temperature sensitive for growth. In total the isolated mutants were distributed in ten complementation groups. Cloning experiments revealed that most of the mutants were in essential genes encoding various 26S proteasome subunits. We found that the proteasome mutants are multi-drug resistant due to stabilization of the stress-activated transcription factor Pap1. We show that the ubiquitylation and ultimately the degradation of Pap1 depend on the Rhp6/Ubc2 E2 ubiquitin conjugating enzyme and the Ubr1 E3 ubiquitin-protein ligase. Accordingly, mutants lacking Rhp6 or Ubr1 display drug-resistant phenotypes

    Changing indications and socio-demographic determinants of (adeno)tonsillectomy among children in England--are they linked? A retrospective analysis of hospital data.

    Get PDF
    OBJECTIVE: To assess whether increased awareness and diagnosis of obstructive sleep apnoea syndrome (OSAS) and national guidance on tonsillectomy for recurrent tonsillitis have influenced the socio-demographic profile of children who underwent tonsillectomy over the last decade. METHOD: Retrospective time-trends study of Hospital Episodes Statistics data. We examined the age, sex and deprivation level, alongside OSAS diagnoses, among children aged <16 years who underwent (adeno)tonsillectomy in England between 2001/2 and 2011/12. RESULTS: Among children aged <16 years, there were 29,697 and 27,732 (adeno)tonsillectomies performed in 2001/2 and 2011/12, respectively. The median age at (adeno)tonsillectomy decreased from 7 (IQR: 5-11) to 5 (IQR: 4-9) years over the decade. (Adeno)tonsillectomy rates among children aged 4-15 years decreased by 14% from 350 (95%CI: 346-354) in 2001/2 to 300 (95%CI: 296-303) per 100,000 children in 2011/12. However, (adeno)tonsillectomy rates among children aged <4 years increased by 58% from 135 (95%CI: 131-140) to 213 (95%CI 208-219) per 100,000 children in 2001/2 and 2011/2, respectively. OSAS diagnoses among children aged <4 years who underwent surgery increased from 18% to 39% between these study years and the proportion of children aged <4 years with OSAS from the most deprived areas increased from 5% to 12%, respectively. CONCLUSIONS: (Adeno)tonsillectomy rates declined among children aged 4-15 years, which reflects national guidelines recommending the restriction of the operation to children with more severe recurrent throat infections. However, (adeno)tonsillectomy rates among pre-school children substantially increased over the past decade and one in five children undergoing the operation was aged <4 years in 2011/12.The increase in surgery rates in younger children is likely to have been driven by increased awareness and detection of OSAS, particularly among children from the most deprived areas

    High-fidelity quantum driving

    Full text link
    The ability to accurately control a quantum system is a fundamental requirement in many areas of modern science such as quantum information processing and the coherent manipulation of molecular systems. It is usually necessary to realize these quantum manipulations in the shortest possible time in order to minimize decoherence, and with a large stability against fluctuations of the control parameters. While optimizing a protocol for speed leads to a natural lower bound in the form of the quantum speed limit rooted in the Heisenberg uncertainty principle, stability against parameter variations typically requires adiabatic following of the system. The ultimate goal in quantum control is to prepare a desired state with 100% fidelity. Here we experimentally implement optimal control schemes that achieve nearly perfect fidelity for a two-level quantum system realized with Bose-Einstein condensates in optical lattices. By suitably tailoring the time-dependence of the system's parameters, we transform an initial quantum state into a desired final state through a short-cut protocol reaching the maximum speed compatible with the laws of quantum mechanics. In the opposite limit we implement the recently proposed transitionless superadiabatic protocols, in which the system perfectly follows the instantaneous adiabatic ground state. We demonstrate that superadiabatic protocols are extremely robust against parameter variations, making them useful for practical applications.Comment: 17 pages, 4 figure

    Identification of a cyclin B1-derived CTL epitope eliciting spontaneous responses in both cancer patients and healthy donors

    Get PDF
    With the aim to identify cyclin B1-derived peptides with high affinity for HLA-A2, we used three in silico prediction algorithms to screen the protein sequence for possible HLA-A2 binders. One peptide scored highest in all three algorithms, and the high HLA-A2-binding affinity of this peptide was verified in an HLA stabilization assay. By stimulation with peptide-loaded dendritic cells a CTL clone was established, which was able to kill two breast cancer cell lines in an HLA-A2-dependent and peptide-specific manner, demonstrating presentation of the peptide on the surface of cancer cells. Furthermore, blood from cancer patients and healthy donors was screened for spontaneous T-cell reactivity against the peptide in IFN-γ ELISPOT assays. Patients with breast cancer, malignant melanoma, or renal cell carcinoma hosted powerful and high-frequency T-cell responses against the peptide. In addition, when blood from healthy donors was tested, similar responses were observed. Ultimately, serum from cancer patients and healthy donors was analyzed for anti-cyclin B1 antibodies. Humoral responses against cyclin B1 were frequently detected in both cancer patients and healthy donors. In conclusion, a high-affinity cyclin B1-derived HLA-A2-restricted CTL epitope was identified, which was presented on the cell surface of cancer cells, and elicited spontaneous T-cell responses in cancer patients and healthy donors

    What is Quantum? Unifying Its Micro-Physical and Structural Appearance

    Full text link
    We can recognize two modes in which 'quantum appears' in macro domains: (i) a 'micro-physical appearance', where quantum laws are assumed to be universal and they are transferred from the micro to the macro level if suitable 'quantum coherence' conditions (e.g., very low temperatures) are realized, (ii) a 'structural appearance', where no hypothesis is made on the validity of quantum laws at a micro level, while genuine quantum aspects are detected at a structural-modeling level. In this paper, we inquire into the connections between the two appearances. We put forward the explanatory hypothesis that, 'the appearance of quantum in both cases' is due to 'the existence of a specific form of organisation, which has the capacity to cope with random perturbations that would destroy this organisation when not coped with'. We analyse how 'organisation of matter', 'organisation of life', and 'organisation of culture', play this role each in their specific domain of application, point out the importance of evolution in this respect, and put forward how our analysis sheds new light on 'what quantum is'.Comment: 10 page

    Kitaev's quantum double model from a local quantum physics point of view

    Full text link
    A prominent example of a topologically ordered system is Kitaev's quantum double model D(G)\mathcal{D}(G) for finite groups GG (which in particular includes G=Z2G = \mathbb{Z}_2, the toric code). We will look at these models from the point of view of local quantum physics. In particular, we will review how in the abelian case, one can do a Doplicher-Haag-Roberts analysis to study the different superselection sectors of the model. In this way one finds that the charges are in one-to-one correspondence with the representations of D(G)\mathcal{D}(G), and that they are in fact anyons. Interchanging two of such anyons gives a non-trivial phase, not just a possible sign change. The case of non-abelian groups GG is more complicated. We outline how one could use amplimorphisms, that is, morphisms AMn(A)A \to M_n(A) to study the superselection structure in that case. Finally, we give a brief overview of applications of topologically ordered systems to the field of quantum computation.Comment: Chapter contributed to R. Brunetti, C. Dappiaggi, K. Fredenhagen, J. Yngvason (eds), Advances in Algebraic Quantum Field Theory (Springer 2015). Mainly revie

    Stabilizing entanglement autonomously between two superconducting qubits

    Full text link
    Quantum error-correction codes would protect an arbitrary state of a multi-qubit register against decoherence-induced errors, but their implementation is an outstanding challenge for the development of large-scale quantum computers. A first step is to stabilize a non-equilibrium state of a simple quantum system such as a qubit or a cavity mode in the presence of decoherence. Several groups have recently accomplished this goal using measurement-based feedback schemes. A next step is to prepare and stabilize a state of a composite system. Here we demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. Our result is achieved by an autonomous feedback scheme which combines continuous drives along with a specifically engineered coupling between the two-qubit register and a dissipative reservoir. Similar autonomous feedback techniques have recently been used for qubit reset and the stabilization of a single qubit state, as well as for creating and stabilizing states of multipartite quantum systems. Unlike conventional, measurement-based schemes, an autonomous approach counter-intuitively uses engineered dissipation to fight decoherence, obviating the need for a complicated external feedback loop to correct errors, simplifying implementation. Instead the feedback loop is built into the Hamiltonian such that the steady state of the system in the presence of drives and dissipation is a Bell state, an essential building-block state for quantum information processing. Such autonomous schemes, broadly applicable to a variety of physical systems as demonstrated by a concurrent publication with trapped ion qubits, will be an essential tool for the implementation of quantum-error correction.Comment: 39 pages, 7 figure
    corecore