27,820 research outputs found
Comparison of neutron scattering and DFM capacitance instruments in measuring soil water evaporation
Soil water evaporation is an important parameter that needs to be accurately measured for the design of water-efficient agricultural systems. With this study, the abilities of the DFM capacitance probes and a neutron water meter (NWM) to measure evaporation from the soil surface were compared. Measured evaporation was compared to the control values measured with mini-lysimeters. Calibration of DFM capacitance probes and the NWM was done in the laboratory using the topsoil of a Bainsvlei soil form. Field measurements of soil water content were done on the same Bainsvlei soil. Calibration results indicated a good correspondence (r2 = 0.99) between the measured values and known volumetric soil water contents. There was no significant difference (p = 95%) between the DFM evaporation measurements and the control, whereas the NWM and control differed significantly. It was concluded that the DFM capacitance probe is a better tool than the NWM in measuring evaporation from the topsoil surface.Keywords: neutron water meter, capacitance probes, evaporation, soil wetnes
On-line Determination of Hydrochloric Acid in Process Effluent Streams by Potentiometric Sequential Injection Acid-Base Titration
An on-line potentiometric sequential injection acid-base system for the titration of a hydrochloric acid solution with a standard sodium hydroxide solution in process effluent streams is proposed. A solution of 0.1 mol/l sodium chloride is used as carrier. The sample is sandwiched between two titrants in a holding coil, with the volume of the first base being twice to that of the second one and channeled by flow reversal through a reaction coil to the potentiometric sensor. A linear relationship between peak width and logarithm of the hydrochloric acid concentration was obtained in the range 0.025 mol/l - 0.05 mol/l of hydrochloric acid when a solution of 0.001 mol/l sodium hydroxide was used for the titration. Samples from process effluent streams were used to evaluate the feasibility of the method with that of an automated and manual titration. The results showed good agreement between the different methods. The percentage relative standard deviation (RSD %) was found to be less than 0.22. The sample frequency is 30 samples per hour.
South African Journal of Chemistry Vol.55 2002: 43-5
The Postoperative Morbidity Survey was validated and used to describe morbidity after major surgery.
OBJECTIVES: To describe the reliability and validity of the Postoperative Morbidity Survey (POMS). To describe the level and pattern of short-term postoperative morbidity after major elective surgery using the POMS. STUDY DESIGN AND SETTING: This was a prospective cohort study of 439 adults undergoing major elective surgery in a UK teaching hospital. The POMS, an 18-item survey that address nine domains of postoperative morbidity, was recorded on postoperative days 3, 5, 8, and 15. RESULTS: Inter-rater reliability was perfect for 11/18 items (Kappa=1.0), with Kappa=0.94 for 6/18 items. A priori hypotheses that the POMS would discriminate between patients with known measures of morbidity risk, and predict length of stay were generally supported through observation of data trends, and there was statistically significant evidence of construct validity for all but the wound and neurological domains. POMS-defined morbidity was present in 325 of 433 patients (75.1%) remaining in hospital on postoperative day 3 after surgery, 231 of 407 patients (56.8%) on day 5, 138 of 299 patients (46.2%) on day 8, and 70 of 111 patients (63.1%) on day 15. Gastrointestinal (47.4%), infectious (46.5%), pain-related (40.3%), pulmonary (39.4%), and renal problems (33.3%) were the most common forms of morbidity. CONCLUSION: The POMS is a reliable and valid survey of short-term postoperative morbidity in major elective surgery. Many patients remain in hospital without any morbidity as recorded by the POMS
Analysis of time-to-event for observational studies: Guidance to the use of intensity models
This paper provides guidance for researchers with some mathematical
background on the conduct of time-to-event analysis in observational studies
based on intensity (hazard) models. Discussions of basic concepts like time
axis, event definition and censoring are given. Hazard models are introduced,
with special emphasis on the Cox proportional hazards regression model. We
provide check lists that may be useful both when fitting the model and
assessing its goodness of fit and when interpreting the results. Special
attention is paid to how to avoid problems with immortal time bias by
introducing time-dependent covariates. We discuss prediction based on hazard
models and difficulties when attempting to draw proper causal conclusions from
such models. Finally, we present a series of examples where the methods and
check lists are exemplified. Computational details and implementation using the
freely available R software are documented in Supplementary Material. The paper
was prepared as part of the STRATOS initiative.Comment: 28 pages, 12 figures. For associated Supplementary material, see
http://publicifsv.sund.ku.dk/~pka/STRATOSTG8
Impacts of the Covid-19 pandemic on the health of university students
The Covid-19 pandemic caused by the novel Sars-CoV-2 coronavirus, has resulted in millions of deaths and disruption to daily life across the globe. University students have been additionally affected by a sudden move to online learning, the closure of campuses and dramatic societal changes that have upended their experiences of higher education. Here we focus on the physical and mental health consequences of the pandemic for this population sector during 2020, and the interdependencies of these impacts. We survey the challenges for infection control on campuses and for monitoring the disease dynamics in student communities. Finally, we explore the psychological and mental health problems that have been exacerbated by the pandemic and evaluate the underlying factors that are most relevant to students
From Nonstandard Analysis to various flavours of Computability Theory
As suggested by the title, it has recently become clear that theorems of
Nonstandard Analysis (NSA) give rise to theorems in computability theory (no
longer involving NSA). Now, the aforementioned discipline divides into
classical and higher-order computability theory, where the former (resp. the
latter) sub-discipline deals with objects of type zero and one (resp. of all
types). The aforementioned results regarding NSA deal exclusively with the
higher-order case; we show in this paper that theorems of NSA also give rise to
theorems in classical computability theory by considering so-called textbook
proofs.Comment: To appear in the proceedings of TAMC2017 (http://tamc2017.unibe.ch/
Chemical Speciation of Copper in a Salt Marsh Estuary and Bioavailability to Thaumarchaeota
The concentrations of dissolved copper (Cud), copper-binding ligands, thiourea-type thiols, and humic substances (HSCu) were measured in estuarine waters adjacent to Sapelo Island, Georgia, USA, on a monthly basis from April to December 2014. Here we present the seasonal cycle of copper speciation within the estuary and compare it to the development of an annually occurring bloom of Ammonia Oxidizing Archaea (AOA), which require copper for many enzymes. Two types of complexing ligands (L1 and L2) were found to dominate with mean complex stabilities (log KCuL′) of 14.5 and 12.8. Strong complexation resulted in lowering the concentration of free cupric ion (Cu2+) to femtomolar (fM) levels throughout the study and to sub-fM levels during the summer months. A Thaumarchaeota bloom during this period suggests that this organism manages to grow at very low Cu2+ concentrations. Correlation of the concentration of the L1 ligand class with a thiourea-type thiol and the L2 ligand class with HSCu provide an interesting dimension to the identity of the ligand classes. Due to the stronger complex stability, 82–99% of the copper was bound to L1. Thiourea-type thiols typically form Cu(I) species, which would suggest that up to ~90% copper could be present as Cu(I) in this region. In view of the very low concentration of free copper (pCu > 15 at the onset and during the bloom) and a reputedly high requirement for copper, it is likely that the Thaumarchaeota are able to access thiol-bound copper directly
Molecular mechanism of influenza A NS1-mediated TRIM25 recognition and inhibition
RIG-I is a viral RNA sensor that induces the production of type I interferon (IFN) in response to infection with a variety of viruses. Modification of RIG-I with K63-linked poly-ubiquitin chains, synthesised by TRIM25, is crucial for activation of the RIG-I/MAVS signalling pathway. TRIM25 activity is targeted by influenza A virus non-structural protein 1 (NS1) to suppress IFN production and prevent an efficient host immune response. Here we present structures of the human TRIM25 coiled-coil-PRYSPRY module and of complexes between the TRIM25 coiled-coil domain and NS1. These structures show that binding of NS1 interferes with the correct positioning of the PRYSPRY domain of TRIM25 required for substrate ubiquitination and provide a mechanistic explanation for how NS1 suppresses RIG-I ubiquitination and hence downstream signalling. In contrast, the formation of unanchored K63-linked poly-ubiquitin chains is unchanged by NS1 binding, indicating that RING dimerisation of TRIM25 is not affected by NS1
Specific binding of radiolabeled Cry1Fa insecticidal protein from Bacillus thuringiensis to midgut sites in lepidopteran species
Cry1Fa insecticidal protein was successfully radiolabeled with 125I-Na. Specific binding to brush border membrane vesicles was shown for the lepidopteran species Ostrinia nubilalis, Spodoptera frugiperda, Spodoptera exigua, Helicoverpa armigera, Heliothis virescens, and Plutella xylostella. Homologous competition assays were performed to obtain equilibrium binding parameters (Kd [dissociation constant] and Rt [concentration of binding sites]) for these six insect species
Toward a Regional Classification to Provide a More Inclusive Examination of the Ocean Biogeochemistry of Iron-Binding Ligands
Iron-binding ligands are paramount to understanding iron biogeochemistry and its potential to set the productivity and the magnitude of the biological pump in >30% of the ocean. However, the nature of these ligands is largely uncharacterized and little is known about their sources, sensitivity to photochemistry and biological transformation, or scavenging behavior. Despite many uncertainties, there is no doubt that ligands are produced by a wide range of biotic and abiotic processes, and that the bulk ligand pool encompasses a diverse range of molecules. Despite widespread recognition of the likelihood of a continuum of ligand classes making up the bulk ligand pool, studies to date largely focused on the dominant ligand. Thus, most studies have overlooked the need to assess where these targeted molecules fit across the spectrum of ligands that comprise the bulk ligand pool. Here we summarize present knowledge to critically assess the source(s), function(s), production pathways, and loss mechanisms of three important iron-binding organic ligand groups in order to assess their distinctive characteristics and how they link with observed ligand distributions. We considered that ligands are contained in broad groupings of exopolymer substances (EPS), humic substances (HS), and siderophores; using literature data for speciation modeling suggested that this adequately described the iron speciation reported in the ocean. We hypothesize that a holistic viewpoint of the multi-faceted controls on ligands dynamics is essential to begin to understand why some ligands can be expected to dominate in particular oceanic regions, depth strata, or exhibit seasonality and/or lateral gradients. We advocate that the development of a regional classification will enhance our understanding of the changing composition of the bulk ligand pool across the global ocean and to help address to what extent seasonality influences the makeup of this pool. This classification, based on selected functional ligand classes, can act as a bridge to use future ligand datasets to fill in the gaps in the continuum
- …